Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Autoimmun ; 143: 103167, 2024 02.
Article in English | MEDLINE | ID: mdl-38301504

ABSTRACT

IL-23-activation of IL-17 producing T cells is involved in many rheumatic diseases. Herein, we investigate the role of IL-23 in the activation of myeloid cell subsets that contribute to skin inflammation in mice and man. IL-23 gene transfer in WT, IL-23RGFP reporter mice and subsequent analysis with spectral cytometry show that IL-23 regulates early innate immune events by inducing the expansion of a myeloid MDL1+CD11b+Ly6G+ population that dictates epidermal hyperplasia, acanthosis, and parakeratosis; hallmark pathologic features of psoriasis. Genetic ablation of MDL-1, a major PU.1 transcriptional target during myeloid differentiation exclusively expressed in myeloid cells, completely prevents IL-23-pathology. Moreover, we show that IL-23-induced myeloid subsets are also capable of producing IL-17A and IL-23R+MDL1+ cells are present in the involved skin of psoriasis patients and gene expression correlations between IL-23 and MDL-1 have been validated in multiple patient cohorts. Collectively, our data demonstrate a novel role of IL-23 in MDL-1-myelopoiesis that is responsible for skin inflammation and related pathologies. Our data open a new avenue of investigations regarding the role of IL-23 in the activation of myeloid immunoreceptors and their role in autoimmunity.


Subject(s)
Arthritis, Psoriatic , Dermatitis , Psoriasis , Humans , Arthritis, Psoriatic/pathology , Interleukin-17/genetics , Interleukin-17/metabolism , Neutrophils/metabolism , Skin/pathology , Dermatitis/pathology , Inflammation , Interleukin-23/genetics , Interleukin-23/metabolism , Receptors, Cell Surface/metabolism , Lectins, C-Type/genetics
2.
Immunohorizons ; 7(12): 861-871, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38112660

ABSTRACT

Influenza is a highly contagious, acute respiratory disease that causes significant public health and economic threats. Influenza infection induces various inflammatory mediators, IFNs, and recruitment of inflammatory cells in the host. This inflammatory "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Empagliflozin is a drug primarily used to lower blood glucose in type II diabetes patients by inhibiting the sodium-glucose cotransporter-2 (SGLT-2) found in the proximal tubules in the kidneys. In this study, we have investigated the effects of empagliflozin on the pulmonary immune response to influenza infection. C57BL/6 mice (wild type) were infected with influenza A/PR/8/34 and treated with empagliflozin, and the disease outcomes were analyzed. Empagliflozin treatment decreased the expression of the inflammatory cytokines IL-1ß, IL-6, and CCL2; the percentage of inflammatory monocytes and inducible NO synthase-positive macrophages; and IFN response genes Stat1 and CXCL9 during influenza infection. Further, empagliflozin treatment decreases the expression of IL-6, CCL2, and CCL5 in RAW264.7 macrophages and bone marrow-derived macrophages. However, empagliflozin treatment increased influenza viral titer during infection. Despite fostering an increased viral burden, treatment with empagliflozin decreases the mortality in wild type and high fat diet-induced atherosclerotic LDLR-/- mice. Based on our findings, empagliflozin may have therapeutic implications for use in patients to prevent lung damage and acute respiratory illness.


Subject(s)
Diabetes Mellitus, Type 2 , Influenza, Human , Sodium-Glucose Transporter 2 Inhibitors , Humans , Mice , Animals , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Influenza, Human/drug therapy , Interleukin-6 , Mice, Inbred C57BL , Blood Glucose , Immunity , Sodium/therapeutic use
3.
Sci Immunol ; 8(84): eabq7991, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37267384

ABSTRACT

Whereas the cellular and molecular features of human inflammatory skin diseases are well characterized, their tissue context and systemic impact remain poorly understood. We thus profiled human psoriasis (PsO) as a prototypic immune-mediated condition with a high predilection for extracutaneous involvement. Spatial transcriptomics (ST) analyses of 25 healthy, active lesion, and clinically uninvolved skin biopsies and integration with public single-cell transcriptomics data revealed marked differences in immune microniches between healthy and inflamed skin. Tissue-scale cartography further identified core disease features across all active lesions, including the emergence of an inflamed suprabasal epidermal state and the presence of B lymphocytes in lesional skin. Both lesional and distal nonlesional samples were stratified by skin disease severity and not by the presence of systemic disease. This segregation was driven by macrophage-, fibroblast-, and lymphatic-enriched spatial regions with gene signatures associated with metabolic dysfunction. Together, these findings suggest that mild and severe forms of PsO have distinct molecular features and that severe PsO may profoundly alter the cellular and metabolic composition of distal unaffected skin sites. In addition, our study provides a valuable resource for the research community to study spatial gene organization of healthy and inflamed human skin.


Subject(s)
Ecosystem , Psoriasis , Humans , Transcriptome , Skin/pathology , Psoriasis/genetics , Patient Acuity
4.
Nat Immunol ; 24(5): 855-868, 2023 05.
Article in English | MEDLINE | ID: mdl-37012543

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , T-Lymphocytes, Helper-Inducer , B-Lymphocytes , Lymphoid Tissue , Germinal Center , Transcription Factors
5.
Front Immunol ; 13: 1026574, 2022.
Article in English | MEDLINE | ID: mdl-36420272

ABSTRACT

Objective: Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) is essential for the formation of fully functional multinucleated osteoclasts. DC-STAMP deficient mice, under physiological conditions, exhibit osteopetrosis and develop systemic autoimmunity with age. However, the function of DC-STAMP in inflammation is currently unknown. We examined whether genetic ablation of DC-STAMP attenuates synovitis and bone erosion in TNF transgenic (Tg) and K/BxN serum-induced murine rheumatoid arthritis. Methods: We evaluated arthritis onset in Tg(hTNF) mice lacking DC-STAMP and 50:50 chimeric mice by visual examination, measurement of ankle width, micro-CT-scan analysis and quantitation of the area occupied by osteoclasts in bone sections. To further investigate the cellular and molecular events modulated by DC-STAMP, we measured serum cytokines, determined changes in cytokine mRNA expression by monocytes activated with IL4 or LPS/IFNγ and enumerated immune cells in inflamed mouse joints. Results: Synovitis, bone loss and matrix destruction are markedly reduced in Dcstamp-/-;Tg(hTNF) mice. These mice had significantly lower CCL2 and murine TNF serum levels and exhibited impaired monocyte joint migration compared to Tg(hTNF) mice. The reduced arthritic severity in Dcstamp deficient mice was associated with compromised monocyte chemotaxis, cytokine production, and M2 polarization. Conclusion: These results reveal that DC-STAMP modulates both bone resorption and inflammation and may serve as an activity biomarker and therapeutic target in inflammatory arthritis and metabolic bone disease.


Subject(s)
Arthritis, Rheumatoid , Bone Resorption , Synovitis , Animals , Mice , Membrane Proteins/metabolism , Bone Resorption/metabolism , Arthritis, Rheumatoid/metabolism , Dendritic Cells/metabolism , Inflammation , Cytokines
6.
Arthritis Rheumatol ; 74(8): 1363-1375, 2022 08.
Article in English | MEDLINE | ID: mdl-35333447

ABSTRACT

OBJECTIVE: To investigate the hypothesis that selective inhibitors of nuclear export (SINE compounds), recently approved for treatment of refractory plasma cell (PC) malignancy, may have potential in the treatment of lupus. METHODS: Female NZB/NZW mice were treated with the SINE compound KPT-350 or vehicle control. Tissue specimens were harvested and analyzed by flow cytometry, using standard markers. Nephritis was monitored by determining the proteinuria score and by histologic analysis of kidney specimens. Serum anti-double-stranded DNA (anti-dsDNA) levels were measured by enzyme-linked immunosorbent assay, and total numbers of IgG-secreting and dsDNA-specific antibody-secreting cells were assessed by enzyme-linked immunospot assay. RESULTS: KPT-350 abrogated murine lupus nephritis at both early and late stages of the disease and rapidly impaired generation of autoreactive PCs in germinal centers (GCs). SINE compounds inhibited the production of NF-κB-driven homeostatic chemokines by stromal cells, altering splenic B and T cell strategic positioning and significantly reducing follicular helper T cell, GC B cell, and autoreactive PC counts. KPT-350 also decreased levels of cytokines and chemokines involved in PC survival and recruitment in the kidney of lupus-prone mice. Exportin 1, the target of SINE compounds, was detected in GCs of human tonsils, splenic B cells of lupus patients, and multiple B cell subsets in the kidneys of patients with lupus nephritis. CONCLUSION: Collectively, our results provide support for the therapeutic potential of SINE compounds, via their targeting of several molecular and cellular pathways critical in lupus pathogenesis, including autoantibody production by plasma cells.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Active Transport, Cell Nucleus , Animals , Autoantibodies , Disease Models, Animal , Enzyme-Linked Immunospot Assay , Female , Humans , Lupus Erythematosus, Systemic/drug therapy , Mice , Mice, Inbred NZB , Plasma Cells
7.
Microbiol Spectr ; 9(3): e0160121, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34817228

ABSTRACT

Recombinant viruses expressing reporter genes allow visualization and quantification of viral infections and can be used as valid surrogates to identify the presence of the virus in infected cells and animal models. However, one of the limitations of recombinant viruses expressing reporter genes is the use of either fluorescent or luciferase proteins that are used alternatively for different purposes. Vaccinia virus (VV) is widely used as a viral vector, including recombinant (r)VV singly expressing either fluorescent or luciferase reporter genes that are useful for specific purposes. In this report, we engineered two novel rVV stably expressing both fluorescent (Scarlet or GFP) and luciferase (Nluc) reporter genes from different loci in the viral genome. In vitro, these bi-reporter-expressing rVV have similar growth kinetics and plaque phenotype than those of the parental WR VV isolate. In vivo, rVV Nluc/Scarlet and rVV Nluc/GFP effectively infected mice and were easily detected using in vivo imaging systems (IVIS) and ex vivo in the lungs from infected mice. Importantly, we used these bi-reporter-expressing rVV to assess viral pathogenesis, infiltration of immune cells in the lungs, and to directly identify the different subsets of cells infected by VV in the absence of antibody staining. Collectively, these rVV expressing two reporter genes open the feasibility to study the biology of viral infections in vitro and in vivo, including host-pathogen interactions and dynamics or tropism of viral infections. IMPORTANCE Despite the eradication of variola virus (VARV), the causative agent of smallpox, poxviruses still represent an important threat to human health due to their possible use as bioterrorism agents and the emergence of zoonotic poxvirus diseases. Recombinant vaccinia viruses (rVV) expressing easily traceable fluorescent or luciferase reporter genes have significantly contributed to the progress of poxvirus research. However, rVV expressing one marker gene have several constraints for in vitro and in vivo studies, since both fluorescent and luciferase proteins impose certain limitations for specific applications. To overcome these limitations, we generated optimized rVV stably expressing both fluorescent (Scarlet or GFP) and luciferase (Nluc) reporter genes to easily track viral infection in vitro and in vivo. This new generation of double reporter-expressing rVV represent an excellent option to study viral infection dynamics in cultured cells and validated animal models of infection.


Subject(s)
Vaccinia virus , Virus Diseases/prevention & control , Animals , Cell Line , Female , Fluorescence , Gene Expression , Genes, Reporter , Genome, Viral , Humans , In Vitro Techniques , Lung/diagnostic imaging , Lung/pathology , Mice , Mice, Inbred BALB C , Staining and Labeling , Vaccines, Synthetic , Vaccinia virus/genetics , Virus Diseases/pathology , Virus Replication
8.
Front Immunol ; 11: 570661, 2020.
Article in English | MEDLINE | ID: mdl-33101290

ABSTRACT

Inducible Bronchus Associated Lymphoid Tissue (iBALT) is an ectopic lymphoid tissue associated with severe forms of chronic lung diseases, including chronic obstructive pulmonary disease, rheumatoid lung disease, hypersensitivity pneumonitis and asthma, suggesting that iBALT may exacerbate these clinical conditions. However, despite the link between pulmonary pathology and iBALT formation, the role of iBALT in pathogenesis remains unknown. Here we tested whether the presence of iBALT in the lung prior to sensitization and challenge with a pulmonary allergen altered the biological outcome of disease. We found that the presence of iBALT did not exacerbate Th2 responses to pulmonary sensitization with ovalbumin. Instead, we found that mice with iBALT exhibited delayed Th2 accumulation in the lung, reduced eosinophil recruitment, reduced goblet cell hyperplasia and reduced mucus production. The presence of iBALT did not alter Th2 priming, but instead delayed the accumulation of Th2 cells in the lung following challenge and altered the spatial distribution of T cells in the lung. These results suggest that the formation of iBALT and sequestration of effector T cells in the context of chronic pulmonary inflammation may be a mechanism by which the immune system attenuates pulmonary inflammation and prevents excessive pathology.


Subject(s)
Bronchi/immunology , Hypersensitivity/immunology , Inflammation/immunology , Lung/immunology , Lymphoid Tissue/immunology , Respiratory System/immunology , Th2 Cells/immunology , Animals , Disease Models, Animal , Humans , Immunity, Mucosal , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic
9.
Endocr Relat Cancer ; 27(4): 261-274, 2020 04.
Article in English | MEDLINE | ID: mdl-32045362

ABSTRACT

Chronic inflammation promotes progression of many cancers, with circulating myeloid-derived suppressor cell (MDSC) levels correlating with poor prognosis. Here we examine effects of MDSCs on lymphangioleiomyomatosis (LAM), a rare disease occurring almost exclusively in women whereby estrogen-sensitive metastatic TSC2-null tumors grow throughout the lungs, markedly reducing pulmonary function. The LAM cell origin remains unknown; however, previous work demonstrated that Tsc2 inactivation in the mouse uterus induced estrogen-dependent myometrial tumors with nearly all features of LAM. Half of these animals developed metastatic myometrial tumors in the lungs, suggesting that LAM cells might originate from the myometrium, possibly explaining its overwhelming female prevalence and estrogen-sensitivity. Here we report that MDSC levels, and in particular granulocytic myeloid cell levels, are elevated in the periphery and in tumors of uterine-specific Tsc2-null mice. Importantly, MDSC depletion or inhibition of their recruitment impairs myometrial tumor growth. RNA and protein analysis of Tsc2-null myometrial tumors and xenografts demonstrate high expression and activity of the serine protease neutrophil elastase (NE), with selective qPCR studies indicating a stromal origin of the NE. Notably, treatment with sivelestat, a known NE inhibitor already approved for human use in some countries, reduces tumor growth similar to MDSC depletion. Furthermore, NE promotes Tsc2-null tumor cell growth, migration, and invasion in vitro. Finally, NE-expressing myeloid cells are present throughout the lungs of LAM patients but not controls. These data suggest that NE derived from granulocytic myeloid cells might directly promote LAM tumor cell progression and could be a novel therapeutic target for LAM.


Subject(s)
Leukocyte Elastase/metabolism , Lymphangioleiomyomatosis/metabolism , Myeloid Cells/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Animals , Cell Proliferation , Humans , Mice , Rats
10.
Mol Cancer Res ; 17(4): 845-859, 2019 04.
Article in English | MEDLINE | ID: mdl-30610107

ABSTRACT

Granulocytic myeloid infiltration and resultant enhanced neutrophil elastase (NE) activity is associated with poor outcomes in numerous malignancies. We recently showed that NE expression and activity from infiltrating myeloid cells was high in human prostate cancer xenografts and mouse Pten-null prostate tumors. We further demonstrated that NE directly stimulated human prostate cancer cells to proliferate, migrate, and invade, and inhibition of NE in vivo attenuated xenograft growth. Interestingly, reduced expression of SERPINB1, an endogenous NE inhibitor, also correlates with diminished survival in some cancers. Therefore, we sought to characterize the role of SERPINB1 in prostate cancer. We find that SERPINB1 expression is reduced in human metastatic and locally advanced disease and predicts poor outcome. SERPINB1 is also reduced in Pten-null mouse prostate tumors compared with wild-type prostates, and treatment with sivelestat (SERPINB1 pharmacomimetic) attenuates tumor growth. Knockdown of highly expressed SERPINB1 in nonmalignant prostatic epithelial cells (RWPE-1) increases proliferation, decreases apoptosis, and stimulates expression of epithelial-to-mesenchymal transition markers. In contrast, stable SERPINB1 expression in normally low-expressing prostate cancer cells (C4-2) reduces xenograft growth in vivo. Finally, EZH2-mediated histone (H3K27me3) methylation and DNA methyltransferase-mediated DNA methylation suppress SERPINB1 expression in prostate cancer cells. Analysis of The Cancer Genome Atlas and pyrosequencing demonstrate hypermethylation of the SERPINB1 promoter in prostate cancer compared with normal tissue, and the extent of promoter methylation negatively correlates with SERPINB1 mRNA expression. IMPLICATIONS: Our findings suggest that the balance between SERPINB1 and NE is physiologically important within the prostate and may serve as a biomarker and therapeutic target in prostate cancer.


Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Serpins/genetics , Serpins/metabolism , Animals , Cell Line, Tumor , Disease Progression , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Histones/genetics , Histones/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Nude , Promoter Regions, Genetic , Prostatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transfection
11.
Front Immunol ; 8: 563, 2017.
Article in English | MEDLINE | ID: mdl-28567040

ABSTRACT

OBJECTIVE: Multiple solid cancers contain tertiary lymphoid organs (TLO). However, it is unclear whether they promote tumor rejection, facilitate tumor evasion, or simply whether they are a byproduct of chronic inflammation. We hypothesize that although chronic inflammation induces TLO formation, the tumor milieu can modulate TLO organization and functions in prostate cancer. Therefore, our study seeks to elucidate the cellular and molecular signatures in unique prostatectomy specimens from evanescent carcinoma patients to identify markers of cancer regression, which could be harnessed to modulate local immunosuppression or potentially enhance TLO function. METHODS: We used multicolor immunofluorescence to stain prostate tissues, collected at different stages of cancer progression (prostatic intraepithelial neoplasia, intermediate and advanced cancer) or from patients with evanescent prostate carcinoma. Tissues were stained with antibodies specific for pro-inflammatory molecules (cyclooxygenase 2, CXCL10, IL17), tumor-infiltrating immune cells (mature DC-LAMP+ dendritic cells, CD3+ T cells, CD3+Foxp3+ regulatory T cells (Treg), T bet+ Th1 cells, granzyme B+ cytotoxic cells), and stromal cell populations (lymphatic vessels, tumor neovessels, high endothelial venules (HEV), stromal cells), which promote prostate tumor growth or are critical components of tumor-associated TLO. RESULTS: Generally, inflammatory cells are located at the margins of tumors. Unexpectedly, we found TLO within prostate tumors from patients at different stages of cancer and in unique samples from patients with spontaneous cancer remission. In evanescent prostate carcinomas, accumulation of Treg was compromised, while Tbet+ T cells and CD8 T cells were abundant in tumor-associated TLO. In addition, we found a global decrease in tumor neovascularization and the coverage by cells positive for cyclooxygenase 2 (COX2). Finally, consistent with tumor regression, prostate stem cell antigen was considerably reduced in TLO and tumor areas from evanescent carcinoma patients. CONCLUSION: Collectively, our results suggest that COX2 and Treg are attractive therapeutic targets that can be harnessed to enhance TLO-driven tumor immunity against prostate cancer. Specially, the presence of HEV and lymphatics indicate that TLO can be used as a platform for delivery of cell-based and/or COX2 blocking therapies to improve control of tumor growth in prostate cancer.

12.
Mol Cancer Res ; 15(9): 1138-1152, 2017 09.
Article in English | MEDLINE | ID: mdl-28512253

ABSTRACT

Tissue infiltration and elevated peripheral circulation of granulocytic myeloid-derived cells is associated with poor outcomes in prostate cancer and other malignancies. Although myeloid-derived cells have the ability to suppress T-cell function, little is known about the direct impact of these innate cells on prostate tumor growth. Here, it is reported that granulocytic myeloid-derived suppressor cells (MDSC) are the predominant tumor-infiltrating cells in prostate cancer xenografts established in athymic nude mice. MDSCs significantly increased in number in the peripheral circulation as a function of xenograft growth and were successfully depleted in vivo by Gr-1 antibody treatment. Importantly, MDSC depletion significantly decreased xenograft growth. We hypothesized that granulocytic MDSCs might exert their protumorigenic actions in part through neutrophil elastase (ELANE), a serine protease released upon granulocyte activation. Indeed, it was determined that NE is expressed by infiltrating immune cells and is enzymatically active in prostate cancer xenografts and in prostate tumors of prostate-specific Pten-null mice. Importantly, treatment with sivelestat, a small-molecule inhibitor specific for NE, significantly decreased xenograft growth, recapitulating the phenotype of Gr-1 MDSC depletion. Mechanistically, NE activated MAPK signaling and induced MAPK-dependent transcription of the proliferative gene cFOS in prostate cancer cells. Functionally, NE stimulated proliferation, migration, and invasion of prostate cancer cells in vitro IHC on human prostate cancer clinical biopsies revealed coexpression of NE and infiltrating CD33+ MDSCs.Implications: This report suggests that MDSCs and NE are physiologically important mediators of prostate cancer progression and may serve as potential biomarkers and therapeutic targets. Mol Cancer Res; 15(9); 1138-52. ©2017 AACR.


Subject(s)
Leukocyte Elastase/metabolism , Myeloid Cells/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Animals , Cell Culture Techniques , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/metabolism
13.
Proc Natl Acad Sci U S A ; 112(35): 11024-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26286991

ABSTRACT

The series of events leading to tertiary lymphoid organ (TLO) formation in mucosal organs following tissue damage remain unclear. Using a virus-induced model of autoantibody formation in the salivary glands of adult mice, we demonstrate that IL-22 provides a mechanistic link between mucosal infection, B-cell recruitment, and humoral autoimmunity. IL-22 receptor engagement is necessary and sufficient to promote differential expression of chemokine (C-X-C motif) ligand 12 and chemokine (C-X-C motif) ligand 13 in epithelial and fibroblastic stromal cells that, in turn, is pivotal for B-cell recruitment and organization of the TLOs. Accordingly, genetic and therapeutic blockade of IL-22 impairs and reverses TLO formation and autoantibody production. Our work highlights a critical role for IL-22 in TLO-induced pathology and provides a rationale for the use of IL-22-blocking agents in B-cell-mediated autoimmune conditions.


Subject(s)
Chemokines, CXC/biosynthesis , Interleukins/physiology , Lymphoid Tissue/metabolism , Animals , Autoantibodies/biosynthesis , B-Lymphocytes/metabolism , Chemokines, CXC/metabolism , Interleukins/genetics , Mice , Mice, Knockout , Interleukin-22
14.
J Virol ; 86(12): 6792-803, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491469

ABSTRACT

CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/immunology , Influenza, Human/prevention & control , Interferon-gamma/immunology , Perforin/immunology , Animals , CD4-Positive T-Lymphocytes/virology , Humans , Influenza, Human/genetics , Influenza, Human/virology , Interferon-gamma/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Perforin/genetics
15.
J Immunol ; 184(8): 4215-27, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20237297

ABSTRACT

In vitro generated OVA-specific IL-17-producing CD8 T effector cells (Tc17) from OT-1 mice, adoptively transferred into B16-OVA tumor-bearing mice, controlled tumor growth in early and late stage melanoma. IL-17, TNF, and IFN-gamma from the Tc17 effectors all played a role in an enhanced recruitment of T cells, neutrophils, and macrophages to the tumor. In addition, Tc17 cells and recently recruited, activated neutrophils produced further chemokines, including CCL3, CCL4, CCL5, CXCL9, and CXCL10, responsible for the attraction of type 1 lymphocytes (Th1 and Tc1) and additional neutrophils. Neutrophils were rapidly attracted to the tumor site by an IL-17 dependent mechanism, but at later stages the induction of the chemokine CXCL2 by Tc17-derived TNF and IFN-gamma contributed to sustain neutrophil recruitment. Approximately 10-50 times as many Tc17 effectors were required compared with Tc1 effectors to exert the same level of control over tumor growth. The recruitment of neutrophils was more prominent when Tc17 rather than Tc1 were used to control tumor and depletion of neutrophils resulted in a diminished capacity to control tumor growth.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Immunotherapy, Adoptive/methods , Interleukin-17/biosynthesis , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Cytotoxicity Tests, Immunologic , Disease Models, Animal , Female , Interleukin-17/physiology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasm Staging , Ovalbumin/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Cytotoxic/transplantation
16.
J Immunol ; 182(6): 3469-81, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19265125

ABSTRACT

We show here that IL-17-secreting CD4 T (Th)17 and CD8 T (Tc)17 effector cells are found in the lung following primary challenge with influenza A and that blocking Ab to IL-17 increases weight loss and reduces survival. Tc17 effectors can be generated in vitro using naive CD8 T cells from OT-I TCR-transgenic mice. T cell numbers expand 20-fold and a majority secretes IL-17, but little IFN-gamma. Many of the IL-17-secreting cells also secrete TNF and some secrete IL-2. Tc17 are negative for granzyme B, perforin message, and cytolytic activity, in contrast to Tc1 effectors. Tc17 populations express message for orphan nuclear receptor gammat and FoxP3, but are negative for T-bet and GATA-3 transcription factors. The FoxP3-positive, IL-17-secreting and IFN-gamma-secreting cells represent three separate populations. The IFN-gamma-, granzyme B-, FoxP3-positive cells and cells positive for IL-22 come mainly from memory cells and decrease in number when generated from CD44(low) rather than unselected CD8 T cells. Cells of this unique subset of CD8 effector T cells expand greatly after transfer to naive recipients following challenge and can protect them against lethal influenza infection. Tc17 protection is accompanied by greater neutrophil influx into the lung than in Tc1-injected mice, and the protection afforded by Tc17 effectors is less perforin but more IFN-gamma dependent, implying that different mechanisms are involved.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Interleukin-17/physiology , Orthomyxoviridae Infections/prevention & control , T-Lymphocyte Subsets/immunology , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation , T-Lymphocyte Subsets/virology
17.
Cancer Res ; 68(3): 861-9, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18245488

ABSTRACT

Prostate stem cell antigen (PSCA) is an attractive antigen to target using therapeutic vaccines because of its overexpression in prostate cancer, especially in metastatic tissues, and its limited expression in other organs. Our studies offer the first evidence that a PSCA-based vaccine can induce long-term protection against prostate cancer development in prostate cancer-prone transgenic adenocarcinoma mouse prostate (TRAMP) mice. Eight-week-old TRAMP mice displaying prostate intraepithelial neoplasia were vaccinated with a heterologous prime/boost strategy consisting of gene gun-delivered PSCA-cDNA followed by Venezuelan equine encephalitis virus replicons encoding PSCA. Our results show the induction of an immune response against a newly defined PSCA epitope that is mediated primarily by CD8 T cells. The prostates of PSCA-vaccinated mice were infiltrated by CD4-positive, CD8-positive, CD11b-positive, and CD11c-positive cells. Vaccination induced MHC class I expression and cytokine production [IFN-gamma, tumor necrosis factor-alpha, interleukin 2 (IL-2), IL-4, and IL-5] within prostate tumors. This tumor microenvironment correlated with low Gleason scores and weak PSCA staining on tumor cells present in hyperplastic zones and in areas that contained focal and well-differentiated adenocarcinomas. PSCA-vaccinated TRAMP mice had a 90% survival rate at 12 months of age. In contrast, all control mice had succumbed to prostate cancer or had heavy tumor loads. Crucially, this long-term protective immune response was not associated with any measurable induction of autoimmunity. The possibility of inducing long-term protection against prostate cancer by vaccination at the earliest signs of its development has the potential to cause a dramatic paradigm shift in the treatment of this disease.


Subject(s)
Cancer Vaccines/pharmacology , Membrane Glycoproteins/immunology , Neoplasm Proteins/immunology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/prevention & control , Vaccines, DNA/pharmacology , Animals , Antigens, Neoplasm , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cell Growth Processes/immunology , DNA, Complementary/genetics , DNA, Complementary/immunology , Epitopes, T-Lymphocyte/immunology , GPI-Linked Proteins , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Neoplasm Proteins/genetics , Prostatic Neoplasms/pathology , Vaccines, DNA/immunology
18.
Cancer Res ; 67(3): 1344-51, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17283172

ABSTRACT

Immunotherapy may provide an alternative treatment for cancer patients, especially when tumors overexpress antigens that can be recognized by immune cells. The identification of markers and therapeutic targets that are up-regulated in prostate cancer has been important to design new potential treatments for prostate cancer. Among them, the recently identified six-transmembrane epithelial antigen of the prostate (STEAP) is considered attractive due to its overexpression in human prostate cancer tissues. Our study constitutes the first assessment of the in vivo effectiveness of STEAP-based vaccination in prophylactic and therapeutic mouse models. Two delivery systems, cDNA delivered by gene gun and Venezuelan equine encephalitis virus-like replicon particles (VRP), both encoding mouse STEAP (mSTEAP) and three vaccination strategies were used. Our results show that mSTEAP-based vaccination was able to induce a specific CD8 T-cell response against a newly defined mSTEAP epitope that prolonged the overall survival rate in tumor-challenged mice very significantly. This was achieved without any development of autoimmunity. Surprisingly, CD4 T cells that produced IFNgamma, tumor necrosis factor-alpha (TNF-alpha), and interleukin-2 (IL-2) played the main role in tumor rejection in our model as shown by using CD4- and CD8-deficient mice. In addition, the presence of high IL-12 levels in the tumor environment was associated with a favorable antitumor response. Finally, the therapeutic effect of STEAP vaccination was also assessed and induced a modest but significant delay in growth of established, 31 day old tumors. Taken together, our data suggest that vaccination against mSTEAP is a viable option to delay tumor growth.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/therapeutic use , Prostatic Neoplasms/therapy , Vaccines, DNA/therapeutic use , Animals , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/genetics , Autoantibodies/biosynthesis , Autoantigens/immunology , Autoantigens/therapeutic use , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cell Growth Processes/immunology , DNA, Single-Stranded/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/prevention & control , Rheumatoid Factor/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...