Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 16(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39204389

ABSTRACT

Enterohepatic circulation (EHC) is a complex process where drugs undergo secretion and reabsorption from the intestinal lumen multiple times, resulting in pharmacokinetic profiles with multiple peaks. The impact of EHC on area under the curve (AUC) has been a topic of extensive debate, questioning the suitability of conventional AUC estimation methods. Moreover, a universal model for accurately estimating AUC in EHC scenarios is lacking. To address this gap, we conducted a simulation study evaluating five empirical models under various sampling strategies to assess their performance in AUC estimation. Our results identify the most suitable model for EHC scenarios and underscore the critical role of meal-based sampling strategies in accurate AUC estimation. Additionally, we demonstrate that while the trapezoidal method performs comparably to other models with a large number of samples, alternative models are essential when sample numbers are limited. These findings not only illuminate how EHC influences AUC but also pave the way for the application of empirical models in real-world drug studies.

2.
Curr Mol Pharmacol ; 15(6): 815-831, 2022.
Article in English | MEDLINE | ID: mdl-34620071

ABSTRACT

Cancer therapy advances have yet to impact global cancer mortality. One of the factors limiting mortality burden reduction is the high cost of cancer drugs. Cancer drug repurposing has already failed to meet expectations in terms of drug affordability. The three FDA-approved cancer drugs developed under repurposing: all-trans-retinoic acid, arsenic trioxide, and thalidomide do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows that they have a good safety profile and lack predicted pharmacokinetic interaction among them. Based on that, we propose that the BAPST regimen merits preclinical testing.


Subject(s)
Drug Combinations , Neoplasms , Apomorphine , Benserazide , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Pantoprazole , Simvastatin , Trimetazidine
SELECTION OF CITATIONS
SEARCH DETAIL