Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 175(6): e14073, 2023.
Article in English | MEDLINE | ID: mdl-38148218

ABSTRACT

Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.


Subject(s)
Charophyceae , Chlorophyta , Streptophyta , Phylogeny , Desiccation , Plants , Streptophyta/genetics , Charophyceae/physiology , Chlorophyta/metabolism , Lipids
2.
Biology (Basel) ; 12(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36671798

ABSTRACT

Gesneriaceae is a pantropical family of plants that, thanks to their lithophytic and epiphytic growth forms, have developed different strategies for overcoming water scarcity. Desiccation tolerance or "resurrection" ability is one of them: a rare phenomenon among angiosperms that involves surviving with very little relative water content in their tissues until water is again available. Physiological responses of desiccation tolerance are also activated during freezing temperatures, a stress that many of the resurrection gesneriads suffer due to their mountainous habitat. Therefore, research on desiccation- and freezing-tolerant gesneriads is a great opportunity for crop improvement, and some of them have become reference resurrection angiosperms (Dorcoceras hygrometrica, Haberlea rhodopensis and Ramonda myconi). However, their difficult indoor cultivation and outdoor accessibility are major obstacles for their study. Therefore, this review aims to identify phylogenetic, geoclimatic, habitat, and morphological features in order to propose new tentative resurrection gesneriads as a way of making them more reachable to the scientific community. Additionally, shared and species-specific physiological responses to desiccation and freezing stress have been gathered as a stress response metabolic basis of the family.

3.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499377

ABSTRACT

Resurrection plants are able to deal with complete dehydration of their leaves and then recover normal metabolic activity after rehydration. Only a few resurrection species are exposed to freezing temperatures in their natural environments, making them interesting models to study the key metabolic adjustments of freezing tolerances. Here, we investigate the effect of cold and freezing temperatures on physiological and biochemical changes in the leaves of Haberlea rhodopensis under natural and controlled environmental conditions. Our data shows that leaf water content affects its thermodynamical properties during vitrification under low temperatures. The changes in membrane lipid composition, accumulation of sugars, and synthesis of stress-induced proteins were significantly activated during the adaptation of H. rhodopensis to both cold and freezing temperatures. In particular, the freezing tolerance of H. rhodopensis relies on a sucrose/hexoses ratio in favor of hexoses during cold acclimation, while there is a shift in favor of sucrose upon exposure to freezing temperatures, especially evident when leaf desiccation is relevant. This pattern was paralleled by an elevated ratio of unsaturated/saturated fatty acids and significant quantitative and compositional changes in stress-induced proteins, namely dehydrins and early light-induced proteins (ELIPs). Taken together, our data indicate that common responses of H. rhodopensis plants to low temperature and desiccation involve the accumulation of sugars and upregulation of dehydrins/ELIP protein expression. Further studies on the molecular mechanisms underlying freezing tolerance (genes and genetic regulatory mechanisms) may help breeders to improve the resistance of crop plants.


Subject(s)
Craterostigma , Lamiales , Magnoliopsida , Magnoliopsida/metabolism , Desiccation , Plant Leaves/metabolism , Acclimatization , Sucrose/metabolism , Freezing , Dehydration/metabolism
4.
Methods Mol Biol ; 2494: 135-148, 2022.
Article in English | MEDLINE | ID: mdl-35467205

ABSTRACT

Circadian rhythms affect many aspects of a plant's metabolism including, but not limited to, photosynthesis. Here, we provide a complete protocol for determining changes in the composition of photosynthetic pigments (chlorophyll and carotenoids), and we also consider its implementation within circadian experiments. We describe how to design a circadian experiment with the goal of assessing changes in pigment composition. We then perform two consecutive approaches to track changes in pigment composition: indirect noninvasive estimation of pigment composition (by reflectance or fluorescence) followed by direct pigment analysis (by chromatography or spectrophotometry). Finally, we present several considerations regarding data analyses.


Subject(s)
Chlorophyll , Photosynthesis , Carotenoids/metabolism , Chlorophyll/metabolism , Circadian Rhythm , Photosynthesis/physiology , Spectrophotometry
5.
Tree Physiol ; 42(10): 1988-2002, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35451029

ABSTRACT

Leaves of Mediterranean evergreen tree species experience a reduction in net CO2 assimilation (AN) and mesophyll conductance to CO2 (gm) during aging and senescence, which would be influenced by changes in leaf anatomical traits at cell level. Anatomical modifications can be accompanied by the dismantling of photosynthetic apparatus associated to leaf senescence, manifested through changes at the biochemical level (i.e., lower nitrogen investment in photosynthetic machinery). However, the role of changes in leaf anatomy at cell level and nitrogen content in gm and AN decline experienced by old non-senescent leaves of evergreen trees with long leaf lifespan is far from being elucidated. We evaluated age-dependent changes in morphological, anatomical, chemical and photosynthetic traits in Quercus ilex subsp. rotundifolia Lam., an evergreen oak with high leaf longevity. All photosynthetic traits decreased with increasing leaf age. The relative change in cell wall thickness (Tcw) was less than in chloroplast surface area exposed to intercellular air space (Sc/S), and Sc/S was a key anatomical trait explaining variations in gm and AN among different age classes. The reduction of Sc/S was related to ultrastructural changes in chloroplasts associated to leaf aging, with a concomitant reduction in cytoplasmic nitrogen. Changes in leaf anatomy and biochemistry were responsible for the age-dependent modifications in gm and AN. These findings revealed a gradual physiological deterioration related to the dismantling of the photosynthetic apparatus in older leaves of Q. ilex subsp. rotundifolia.


Subject(s)
Quercus , Carbon Dioxide/metabolism , Mesophyll Cells/physiology , Nitrogen/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Quercus/physiology , Trees/metabolism
6.
Photochem Photobiol Sci ; 21(6): 997-1009, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35226331

ABSTRACT

Evergreen plants growing at high latitudes or high elevations may experience freezing events in their photosynthetic tissues. Freezing events can have physical and physiological effects on the leaves which alter leaf optical properties affecting remote and proximal sensing parameters. We froze leaves of six alpine plant species (Soldanella alpina, Ranunculus kuepferi, Luzula nutans, Gentiana acaulis, Geum montanum, and Centaurea uniflora) and three evergreen forest understorey species (Hepatica nobilis, Fragaria vesca and Oxalis acetosella), and assessed their spectral transmittance and optically measured pigments, as well as photochemical efficiency of photosystem II (PSII) as an indicator of freezing damage. Upon freezing, leaves of all the species transmitted more photosynthetically active radiation (PAR) and some species had increased ultraviolet-A (UV-A) transmittance. These differences were less pronounced in alpine than in understorey species, which may be related to higher chlorophyll degradation, visible as reduced leaf chlorophyll content upon freezing in the latter species. Among these understorey forbs, the thin leaves of O. acetosella displayed the largest reduction in chlorophyll (-79%). This study provides insights into how freezing changes the leaf optical properties of wild plants which could be used to set a baseline for upscaling optical reflectance data from remote sensing. Changes in leaf transmittance may also serve to indicate photosynthetic sufficiency and physiological tolerance of freezing events, but experimental research is required to establish this functional association.


Subject(s)
Chlorophyll , Plant Leaves , Chlorophyll/metabolism , Forests , Freezing , Photosynthesis , Plant Leaves/metabolism
7.
Tree Physiol ; 42(2): 208-224, 2022 02 09.
Article in English | MEDLINE | ID: mdl-33611551

ABSTRACT

Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.


Subject(s)
Quercus , Ecosystem , Photosynthesis , Plant Leaves/physiology , Quercus/physiology , Trees/physiology
8.
Nat Plants ; 7(8): 998-1009, 2021 08.
Article in English | MEDLINE | ID: mdl-34373605

ABSTRACT

For decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry. However, to unleash the full potential of SIF, intensive cross-disciplinary work is required to harmonize these new advances with the rich history of biophysical and ecophysiological studies of ChlaF, fostering the development of next-generation plant physiological and Earth-system models. Here, we introduce the scale-dependent link between SIF and photosynthesis, with an emphasis on seven remaining scientific challenges, and present a roadmap to facilitate future collaborative research towards new applications of SIF.


Subject(s)
Chlorophyll A/physiology , Earth Sciences , Fluorescence , Molecular Biology , Photosynthesis/physiology , Plant Leaves/physiology , Remote Sensing Technology/methods
9.
Physiol Plant ; 172(3): 1506-1517, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33483975

ABSTRACT

Snowmelt in alpine ecosystems brings ample water, and together with above-freezing temperatures, initiates plant growth. In this scenario, rapid activation of photosynthesis is essential for a successful life-history strategy. But, strong solar radiation in late spring enhances the risk of photodamage, particularly before photosynthesis is fully functional. We compared the photoprotective strategy of five alpine forbs: one geophyte not particularly specialised in subnival life (Crocus albiflorus) and four wintergreens differing in their degree of adaptation to subnival life, from least to most specialised: Gentiana acaulis, Geum montanum, Homogyne alpina and Soldanella alpina. We used distance to the edge of snow patches as a proxy to study time-dependent changes after melting. We postulated that the photoprotective response of snowbed specialists would be stronger than of more-generalist alpine meadow species. Fv /Fm was relatively low across wintergreens and even lower in the geophyte C. albiflorus. This species also had the largest xanthophyll-cycle pool and lowest tocopherol and flavonoid glycoside contents. After snow melting, all the species progressively activated ETR, but particularly the intermediate snowbed species G. acaulis and G. montanum. The photoprotective responses after snowmelt were idiosyncratic: G. montanum rapidly accumulated xanthophyll-cycle pigments, tocopherol and flavonoid glycosides; while S. alpina showed the largest increase in plastochromanol-8 and chlorophyll contents and the greatest changes in optical properties. Climate warming scenarios might shift the snowmelt date and consequently alter the effectiveness of photoprotection mechanisms, potentially changing the fitness outcome of the different strategies adopted by alpine forbs.


Subject(s)
Ecosystem , Snow , Climate , Plant Development , Seasons
10.
New Phytol ; 230(4): 1336-1344, 2021 05.
Article in English | MEDLINE | ID: mdl-33452715

ABSTRACT

Xanthophyll cycles are broadly important in photoprotection, and the reversible de-epoxidation of xanthophylls typically occurs in excess light conditions. However, as presented in this review, compiling evidence in a wide range of photosynthetic eukaryotes shows that xanthophyll de-epoxidation also occurs under diverse abiotic stress conditions in darkness. Light-driven photochemistry usually leads to the pH changes that activate de-epoxidases (e.g. violaxanthin de-epoxidase), but in darkness alternative electron transport pathways and luminal domains enriched in monogalactosyl diacyl glycerol (which enhance de-epoxidase activity) likely enable de-epoxidation. Another 'dark side' to sustaining xanthophyll de-epoxidation is inactivation and/or degradation of epoxidases (e.g. zeaxanthin epoxidase). There are obvious benefits of such activity regarding stress tolerance, and indeed this phenomenon has only been reported in stressful conditions. However, more research is required to unravel the mechanisms and understand the physiological roles of dark-induced formation of zeaxanthin. Notably, the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in darkness is still a frequently ignored process, perhaps because it questions a previous paradigm. With that in mind, this review seeks to shed some light on the dark side of xanthophyll de-epoxidation, and point out areas for future work.


Subject(s)
Lutein , Xanthophylls , Darkness , Stress, Physiological , Zeaxanthins
11.
Biochim Biophys Acta Bioenerg ; 1862(2): 148351, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33285101

ABSTRACT

Carotenoids (Cars) regulate the energy flow towards the reaction centres in a versatile way whereby the switch between energy harvesting and dissipation is strongly modulated by the operation of the xanthophyll cycles. However, the cascade of molecular mechanisms during the change from light harvesting to energy dissipation remains spectrally poorly understood. By characterizing the in vivo absorbance changes (ΔA) of leaves from four species in the 500-600 nm range through a Gaussian decomposition, while measuring passively simultaneous Chla fluorescence (F) changes, we present a direct observation of the quick antenna adjustments during a 3-min dark-to-high-light induction. Underlying spectral behaviours of the 500-600 nm ΔA feature can be characterized by a minimum set of three Gaussians distinguishing very quick dynamics during the first minute. Our results show the parallel trend of two Gaussian components and the prompt Chla F quenching. Further, we observe similar quick kinetics between the relative behaviour of these components and the in vivo formations of antheraxanthin (Ant) and zeaxanthin (Zea), in parallel with the dynamic quenching of singlet excited chlorophyll a (1Chla*) states. After these simultaneous quick kinetical behaviours of ΔA and F during the first minute, the 500-600 nm feature continues to increase, indicating a further enhanced absorption driven by the centrally located Gaussian until 3 min after sudden light exposure. Observing these precise underlying kinetic trends of the spectral behaviour in the 500-600 nm region shows the large potential of in vivo leaf spectroscopy to bring new insights on the quick redistribution and relaxation of excitation energy, indicating a key role for both Ant and Zea.


Subject(s)
Chlorophyll A/chemistry , Fluorescence , Xanthophylls/chemistry
12.
New Phytol ; 226(3): 741-759, 2020 05.
Article in English | MEDLINE | ID: mdl-32017123

ABSTRACT

Resurrection plants recover physiological functions after complete desiccation. Almost all of them are native to tropical warm environments. However, the Gesneriaceae include four genera, remnant of the past palaeotropical flora, which inhabit temperate mountains. One of these species is additionally freezing-tolerant: Ramonda myconi. We hypothesise that this species has been able to persist in a colder climate thanks to some resurrection-linked traits. To disentangle the physiological mechanisms underpinning multistress tolerance to desiccation and freezing, we conducted an exhaustive seasonal assessment of photosynthesis (gas exchange, limitations to partitioning, photochemistry and galactolipids) and primary metabolism (through metabolomics) in two natural populations at different elevations. R. myconi displayed low rates of photosynthesis, largely due to mesophyll limitation. However, plants were photosynthetically active throughout the year, excluding a reversible desiccation period. Common responses to desiccation and low temperature involved chloroplast protection: enhanced thermal energy dissipation, higher carotenoid to Chl ratio and de-epoxidation of the xanthophyll cycle. As specific responses, antioxidants and secondary metabolic routes rose upon desiccation, while putrescine, proline and a variety of sugars rose in winter. The data suggest conserved mechanisms to cope with photo-oxidation during desiccation and cold events, while additional metabolic mechanisms may have evolved as specific adaptations to cold during recent glaciations.


Subject(s)
Craterostigma , Adaptation, Physiological , Chloroplasts/metabolism , Desiccation , Photosynthesis , Plants
13.
Plant Methods ; 15: 147, 2019.
Article in English | MEDLINE | ID: mdl-31827579

ABSTRACT

BACKGROUND: Non-invasive procedures for the diagnosis of viability of plant or fungal tissues would be valuable for scientific, industrial and biomonitoring purposes. Previous studies showed that infrared thermography (IRT) enables non-invasive assessment of the viability of individual "orthodox" (i.e. desiccation tolerant) seeds upon water uptake. However, this method was not tested for rehydrating tissues of other desiccation tolerant life forms. Furthermore, evaporative cooling could obscure the effects of metabolic processes that contribute to heating and cooling, but its effects on the shape of the "thermal fingerprints" have not been explored. Here, we further adapted this method using a purpose-built chamber to control relative humidity (RH) and gaseous atmosphere. This enabled us to test (i) the influence of relative humidity on the thermal fingerprints during the imbibition of Pisum sativum (Garden pea) seeds, (ii) whether thermal fingerprints can be correlated with viability in lichens, and (iii) to assess the potential influence of aerobic metabolism on thermal fingerprints by controlling the oxygen concentration in the gaseous atmosphere around the samples. Finally, we developed a method to artificially "age" lichens and validated the IRT-based method to assess lichen viability in three lichen species. RESULTS: Using either 30% or 100% RH during imbibition of pea seeds, we showed that "live" and "dead" seeds produced clearly discernible "thermal fingerprints", which significantly differed by > |0.15| °C in defined time windows, and that RH affected the shape of these thermal fingerprints. We demonstrated that IRT can also be used to assess the viability of the lichens Lobaria pulmonaria, Pseudevernia furfuracea and Peltigera leucophlebia. No clear relationship between aerobic metabolism and the shape of thermal fingerprints was found. CONCLUSIONS: Infrared thermography appears to be a promising method for the diagnosis of viability of desiccation-tolerant tissues at early stages of water uptake. For seeds, it is possible to diagnose viability within the first hours of rehydration, after which time they can still be re-dried and stored until further use. We envisage our work as a baseline study for the use of IR imaging techniques to investigate physiological heterogeneity of desiccation tolerant life forms such as lichens, which can be used for biomonitoring, and for sorting live and dead seeds, which is potentially useful for the seed trade.

14.
Front Plant Sci ; 10: 1130, 2019.
Article in English | MEDLINE | ID: mdl-31616448

ABSTRACT

Fern spores of most species are desiccation tolerant (DT) and, in some cases, are photosynthetic at maturation, the so-called chlorophyllous spores (CS). The lifespan of CS in the dry state is very variable among species. The physiological, biochemical, and biophysical mechanisms underpinning this variability remain understudied and their interpretation from an ecophysiological approach virtually unexplored. In this study, we aimed at fulfilling this gap by assessing photochemical, hydric, and biophysical properties of CS from three temperate species with contrasting biological strategies and longevity in the dry state: Equisetum telmateia (spore maturation and release in spring, ultrashort lifespan), Osmunda regalis (spore maturation and release in summer, medium lifespan), Matteuccia struthiopteris (spore maturation and release in winter, medium-long lifespan). After subjection of CS to controlled drying treatments, results showed that the three species displayed different extents of DT. CS of E. telmateia rapidly lost viability after desiccation, while the other two withstood several dehydration-rehydration cycles without compromising viability. The extent of DT was in concordance with water availability in the sporulation season of each species. CS of O. regalis and M. struthiopteris carried out the characteristic quenching of chlorophyll fluorescence, widely displayed by other DT cryptogams during drying, and had higher tocopherol and proline contents. The turgor loss point of CS is also related to the extent of DT and to the sporulation season: lowest values were found in CS of M. struthiopteris and O. regalis. The hydrophobicity of spores in these two species was higher and probably related to the prevention of water absorption under unfavorable conditions. Molecular mobility, estimated by dynamic mechanical thermal analysis, confirmed an unstable glassy state in the spores of E. telmateia, directly related to the low DT, while the DT species entered in a stable glassy state when dried. Overall, our data revealed a DT syndrome related to the season of sporulation that was characterized by higher photoprotective potential, specific hydric properties, and lower molecular mobility in the dry state. Being unicellular haploid structures, CS represent not only a challenge for germplasm preservation (e.g., as these spores are prone to photooxidation) but also an excellent opportunity for studying mechanisms of DT in photosynthetic cells.

15.
Nutrients ; 11(7)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277441

ABSTRACT

Vegetables, once harvested and stored on supermarket shelves, continue to perform biochemical adjustments due to their modular nature and their ability to retain physiological autonomy. They can live after being harvested. In particular, the content of some essential nutraceuticals, such as carotenoids, can be altered in response to environmental or internal stimuli. Therefore, in the present study, we wondered whether endogenous rhythms continue to operate in commercial vegetables and if so, whether vegetable nutritional quality could be altered by such cycles. Our experimental model consisted of rocket leaves entrained under light/darkness cycles of 12/12 h over 3 days, and then we examined free-run oscillations for 2 days under continuous light or continuous darkness, which led to chlorophyll and carotenoid oscillations in both constant conditions. Given the importance of preserving food quality, the existence of such internal rhythms during continuous conditions may open new research perspective in nutrition science. However, while chromatographic techniques employed to determine pigment composition are accurate, they are also time-consuming and expensive. Here we propose for the first time an alternative method to estimate pigment content and the nutritional quality by the use of non-destructive and in situ optical techniques. These results are promising for nutritional quality assessments.


Subject(s)
Brassicaceae/metabolism , Carotenoids/metabolism , Chlorophyll A/metabolism , Circadian Rhythm , Food Storage , Nutritive Value , Plant Leaves/metabolism , Vegetables/metabolism , Brassicaceae/radiation effects , Carotenoids/radiation effects , Chlorophyll A/radiation effects , Circadian Rhythm/radiation effects , Food Packaging , Photoperiod , Plant Leaves/radiation effects , Time Factors , Vegetables/radiation effects , Zeaxanthins/metabolism
16.
Physiol Plant ; 167(4): 540-555, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30515832

ABSTRACT

Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (Fv /fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt-solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50-200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial Fv /fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.


Subject(s)
Bryophyta/physiology , Dehydration , Photosynthesis , Water/physiology
17.
Molecules ; 23(7)2018 Jul 17.
Article in English | MEDLINE | ID: mdl-30018202

ABSTRACT

The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether the conversion of UV into visible fluorescence might be photosynthetically used by the photobiont, thereby converting UV into useful energy. To address this question, thalli of Xanthoria parietina were used as a model system. In this species the anthraquinone parietin accumulates in the outer upper cortex, conferring the species its characteristic yellow-orange colouration. In ethanol, parietin absorbed strongly in the blue and UV-B and emitted fluorescence in the range 480⁻540 nm, which partially matches with the absorption spectra of photosynthetic pigments. In intact thalli, it was determined by confocal microscopy that fluorescence emission spectra shifted 90 nm towards longer wavelengths. Then, to study energy transfer from parietin, we compared the response to UV of untreated and parietin-free thalli (removed with acetone). A chlorophyll fluorescence kinetic assessment provided evidence of UV-induced electron transport, though independently of the presence of parietin. Thus, a role for anthraquinones in energy harvesting is not supported for X. parietina under presented experimental conditions.


Subject(s)
Ascomycota/metabolism , Emodin/analogs & derivatives , Lichens/metabolism , Ultraviolet Rays , Emodin/metabolism
18.
Physiol Plant ; 160(3): 282-296, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28194795

ABSTRACT

Winter evergreens living in mountainous areas have to withstand a harsh combination of high light levels and low temperatures in wintertime. In response, evergreens can activate a photoprotective process that consists of the downregulation of photosynthetic efficiency, referred to as winter photoinhibition (WPI). WPI has been studied mainly in woody evergreens and crops even when, in many instances, other functional groups such as lichens or bryophytes dominate in alpine and boreal habitats. Thus, we aimed to (1) assess the occurrence of WPI within overwintering evergreens comprising woody species, herbs, mosses and lichens, (2) compare the recovery kinetics among those groups and (3) clarify the role of thylakoid proteins and pigments in both processes: WPI and recovery. With this aim, WPI was analyzed in 50 species in the field and recovery kineticcs were studied in one model species from each functional group. Results showed that high levels of WPI are much more frequent among woody plants than in any other group, but are also present in some herbs, lichens and mosses. Winter conditions almost always led to the de-epoxidation of the xanthophyll cycle. Nevertheless, changes in the de-epoxidation level were not associated with the activation/deactivation of WPI in the field and did not match changes in photochemical efficiency during recovery treatments. Seasonal changes in thylakoid proteins [mainly D1 (photosystem II core complex protein) and PsbS (essential protein for thermal dissipation)] were dependent on the functional group. The results highlight the diversity of physiological solutions and suggest a physical-mechanical reason for the more conservative strategy of woody species compared with other groups.


Subject(s)
Bryophyta/physiology , Lichens/physiology , Bryophyta/genetics , Cold Temperature , Kinetics , Lichens/genetics , Seasons , Xanthophylls/metabolism
19.
Plant Cell Environ ; 40(7): 1153-1162, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28098350

ABSTRACT

There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30-48 h. Photosynthesis and quantum yield peaked at subjective noon, and non-photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light-harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non-stressed plants maximize photosynthesis.


Subject(s)
Circadian Rhythm/physiology , Gossypium/physiology , Phaseolus/physiology , Photosynthesis/physiology , Pigments, Biological/metabolism , Carbohydrate Metabolism , Chlorophyll/metabolism , Chlorophyll A , Plant Leaves/metabolism
20.
Environ Exp Bot ; 133: 87-97, 2017 01.
Article in English | MEDLINE | ID: mdl-29416188

ABSTRACT

Carotenoids constitute a major target of chloroplastic photooxidative reactions, leading to the formation of several oxidized derivatives and cleavage products, some of which are volatile (VCCPs). Among them, ß-cyclocitral (ß-CC), at least, is a retrograde signaling molecule that modulates the activity of many key physiological processes. In the present work, we aimed to study whether ß-CC and other VCCPs are released into the atmosphere from photosynthetic tissues. To overcome stomatal limitations, the foliose chlorolichen Lobaria pulmonaria was used as the model system, and the emissions of biogenic volatiles, induced by heat and wounding stresses, were monitored by proton-transfer reaction time-of-flight mass-spectrometry (PTR-TOF-MS) and gas-chromatography (GC-MS). Prior to stress treatments, VCCPs were emitted constitutively, accounting for 1.3 % of the total volatile release, with ß-CC being the most abundant VCCP. Heat and wounding stresses induced a burst of volatile release, including VCCPs, and a loss of carotenoids. Under heat stress, the production of ß-CC correlated positively with temperature. However the enhancement of production of VCCPs was the lowest among all the groups of volatiles analyzed. Given that the rates of carotenoid loss were three orders of magnitude higher than the release rates of VCCPs and that these compounds only represent a minor fraction in the blend of volatiles, it seems unlikely that VCCPs might represent a global stress signal capable of diffusing through the atmosphere to different neighboring individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...