Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Horm Behav ; 164: 105593, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909429

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized by differences in social communication and interaction, as well as areas of focused interests and/or repetitive behaviors. Recent studies have highlighted a higher prevalence of endocrine and reproductive disturbances among females on the autism spectrum, hinting at potential disruptions within the hypothalamus-pituitary-ovary (HPO) axis. This research aims to explore the reproductive health disparities in ASD using an animal model of autism, the C58/J inbred mouse strain, with a focus on reproductive performance and hormonal profiles compared to the C57BL/6J control strain. Our findings revealed that the estrous cycle in C58/J females is disrupted, as evidenced by a lower frequency of complete cycles and a lack of cyclical release of estradiol and progesterone compared to control mice. C58/J females also exhibited poor performance in several reproductive parameters, including reproductive lifespan and fertility index. Furthermore, estrogen receptor alpha content showed a marked decrease in the hypothalamus of C58/J mice. These alterations in the estrous cycle, hormonal imbalances, and reduced reproductive function imply dysregulation in the HPO axis. Additionally, our in-silico study identified a group of genes involved in infertility carrying single-nucleotide polymorphisms (SNPs) in the C58/J strain, which also have human orthologs associated with autism. These findings could offer valuable insights into the molecular underpinnings of neuroendocrine axis disruption and reproductive issues observed in ASD.

2.
Gene ; 849: 146907, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36174904

ABSTRACT

The flavanol (-)-epicatechin has exercise-mimetic properties. Besides, several miRNAs play a role in modulating the adaptation of the muscle to different training protocols. However, notwithstanding all information, few studies aimed to determine if (-)-epicatechin can modify the expression of miRNAs related to skeletal muscle development and regeneration. Mice were treated for fifteen days by oral gavage with the flavanol (-)-epicatechin. After treatment, the quadriceps of the mice was dissected, and total RNA was extracted. The expression level of miR-133, -204, -206, -223, -486, and -491 was analyzed by qRT-PCR. We also used bioinformatic analysis to predict the participation of these miRNAs in different skeletal muscle signal transduction pathways. Additionally, we analyzed the level of the myogenic proteins MyoD and myogenin by Western blot and measured the cross-sectional area of muscle fibers stained with E&H. (-)-Epicatechin upregulated the expression of miR-133, -204, -206, -223, and -491 significantly, which was associated with an increase in the level of the myogenic proteins MyoD and Myogenin and an augment in the fiber size. The bioinformatics analysis showed that the studied miRNAs might participate in different signal transduction pathways related to muscle development and adaptation. Our results showed that (-)-epicatechin upregulated miRNAs that participate in skeletal exercise muscle adaptation, induced muscle hypertrophy, and increased the level of myogenic proteins MyoD and MyoG.


Subject(s)
Catechin , MicroRNAs , Mice , Animals , Myogenin/genetics , Myogenin/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Catechin/pharmacology , Muscle, Skeletal/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation
3.
Toxics ; 9(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199736

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian timing system. Daytime restricted feeding (DRF) entrains the expression of genes involved in the processing of nutrients and xenobiotics to food availability. Therefore, we evaluate if temporal AhR, ARNT, and CYP1A1 hepatic expression in rats are due to light/dark cycles or fasting/feeding cycles promoted by DRF. Our results show that AhR oscillates throughout the 24 h period in DRF and ad libitum feeding rats (ALF), showing maximum expression at the same time points. DRF modified the peak of ARNT expression at ZT5; meanwhile, ALF animals showed a peak of maximum expression at ZT17. An increased expression of CYP1A1 was linked to the meal time in both groups of animals. Although a high CYP1A1 expression has been previously associated with BaP genotoxicity, our results show that, compared with the ALF group, DRF attenuated the BaP-CYP1A1 induction potency, the liver DNA-BaP adducts, the liver concentration of unmetabolized BaP, and the blood aspartate aminotransferase and alanine aminotransferase activities when BaP is administered prior to the acrophase of CYP1A1 expression. These results demonstrate that DRF modifies the ARNT and CYP1A1 expression and protects from BaP toxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...