ABSTRACT
The maize (Zea mays L.) improvement program of the International Maize and Wheat Improvement Center (CIMMYT) develops broad-based maize populations and, until recently, improved all of them through full-sib family selection with international testing. The purpose of this study was to estimate the genetic and genetic × environment variance components for ten of those populations and to measure expected yield improvement from full-sib selection. Mean yield ranged from 3.35-6.81 t ha(-1). For five populations the average yield in the last cycle was higher than in the initial cycles. Several populations showed no improvement or yielded less in the final cycle of selection, either because selection intensity was low or because strong selection pressure was applied simultaneously for several traits. Variation resulting from differences among family means within cycles and from interaction between families and locations within cycles were significant in all populations and cycles. Results indicate that variability among full-sib families was maintained throughout the cycles for all populations. The large σ ge (2) /σ g (2) ratio shown by most populations suggests that yield response per cycle could be maximized if the environments in which progenies are tested were subdivided and classified into similar subsets. The proportion of the predicted response realized in improved yield varied for each population.
ABSTRACT
Thirteen maize (Zea mays L.) populations including five adapted, five adapted x exotic, two composites of adapted and exotic, and one exotic selected for adaptability were crossed in a diallel mating system. The parents and 78 crosses and nine check hybrids were evaluated for grain yield and plant height in five environments. The Gardner-Eberhart model Analysis II indicated that additive and nonadditive gene effects accounted for 60 and 40% of the total variation among populations, respectively, for grain yield and 86% and 14% of the total variation, respectively, for plant height. Components of heterosis were significant in the combined analysis for both traits. Adapted Corn Belt populations tended to have higher performance in crosses and greater values of variety heterosis than 50% adapted populations. 'Nebraska Elite Composite', 'Corn Belt' x 'Mexican', and 'Corn Belt' x 'Brazilian' showed high mean yields in crosses, however, they were not among those with high estimates of variety heterosis. One exotic population ('Tuxpeno' x 'Antigua Grupo 2') and three adapted populations ['307 Composite', 'NB(S1)C-3', and 'NK(S1)C-3'] might be combined together to form a high-yielding population. It may be possible to synthesize two useful populations for reciprocal recurrent selection by grouping 'Tuxpeno' x 'Antiqua Grupo 2', 'NB(S1)C-3', and 'NS(FS)LFW-8' into one population and 'NK(S1)C-3', 'Krug'x'Tabloncillo', and '307 Composite' in the other one.