Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 38(18): 4316-4328, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29626166

ABSTRACT

In human drug users, cue-induced drug craving progressively intensifies after drug abstinence, promoting drug relapse. This time-dependent progression of drug craving is recapitulated in rodent models, in which rats exhibit progressive intensification of cue-induced drug seeking after withdrawal from drug self-administration, a phenomenon termed incubation of drug craving. Although recent results suggest that functional alterations of the nucleus accumbens (NAc) contribute to incubation of drug craving, it remains poorly understood how NAc function evolves after drug withdrawal to progressively intensify drug seeking. The functional output of NAc relies on how the membrane excitability of its principal medium spiny neurons (MSNs) translates excitatory synaptic inputs into action potential firing. Here, we report a synapse-membrane homeostatic crosstalk (SMHC) in male rats, through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the intrinsic membrane excitability of NAc MSNs, and vice versa. After short-term withdrawal from cocaine self-administration, despite no actual change in the AMPA receptor-mediated excitatory synaptic strength, GluN2B NMDA receptors, the SMHC sensors of synaptic strength, are upregulated. This may create false SMHC signals, leading to a decrease in the membrane excitability of NAc MSNs. The decreased membrane excitability subsequently induces another round of SMHC, leading to synaptic accumulation of calcium-permeable AMPA receptors and upregulation of excitatory synaptic strength after long-term withdrawal from cocaine. Disrupting SMHC-based dysregulation cascades after cocaine exposure prevents incubation of cocaine craving. Thus, cocaine triggers cascades of SMHC-based dysregulation in NAc MSNs, promoting incubated cocaine seeking after drug withdrawal.SIGNIFICANCE STATEMENT Here, we report a bidirectional homeostatic plasticity between the excitatory synaptic input and membrane excitability of nucleus accumbens (NAc) medium spiny neurons (MSNs), through which an increase or decrease in the excitatory synaptic strength induces a homeostatic decrease or increase in the membrane excitability, and vice versa. Cocaine self-administration creates a false homeostatic signal that engages this synapse-membrane homeostatic crosstalk mechanism, and produces cascades of alterations in excitatory synapses and membrane properties of NAc MSNs after withdrawal from cocaine. Experimentally preventing this homeostatic dysregulation cascade prevents the progressive intensification of cocaine seeking after drug withdrawal. These results provide a novel mechanism through which drug-induced homeostatic dysregulation cascades progressively alter the functional output of NAc MSNs and promote drug relapse.


Subject(s)
Cocaine-Related Disorders/physiopathology , Craving , Homeostasis , Action Potentials , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cocaine-Related Disorders/psychology , Cues , Drug-Seeking Behavior , Excitatory Postsynaptic Potentials , Germinal Center Kinases , Male , Neuronal Plasticity , Neurons , Nucleus Accumbens/pathology , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Substance Withdrawal Syndrome/pathology , Substance Withdrawal Syndrome/psychology , Synapses
2.
Comp Biochem Physiol C Toxicol Pharmacol ; 138(3): 375-81, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15533795

ABSTRACT

A high prevalence of germinomas has been observed in certain populations of Mya arenaria from eastern Maine. The etiology of these tumors is unknown. We are investigating the hypothesis that exposure to environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contributes to gonadal carcinogenesis. Clams were exposed to TCDD with or without the initiating compound diethylnitrosamine (DEN) in an attempt to induce germinomas. A TCDD-dependent alteration in gametogenesis was observed in which 32.5+/-6.5% of individuals exhibited undifferentiated gonads. Analyses of AhR and p53 expression were carried out to identify similarities between naturally occurring neoplastic and TCDD (+/-DEN)-altered reproductive tissues. Neoplastic tissues had significantly less p53 protein than matched controls, whereas TCDD-induced undifferentiated samples exhibited no difference in p53 protein levels compared to controls. No gender-specific differences were observed in AhR mRNA, but there were significant differences in protein levels. AhR was undetectable in male gonadal tissue whereas females exhibited a significant positive relationship between AhR protein levels and stage of ovogenesis. Despite exhibiting some morphological similarity, we conclude the TCDD-induced pathology is not a germinoma. We further suggest the change in reproductive tissue is due to inhibition of cell differentiation and/or development by an AhR-independent mechanism.


Subject(s)
Genitalia/drug effects , Mollusca/drug effects , Mollusca/physiology , Polychlorinated Dibenzodioxins/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Animals , Diethylnitrosamine/pharmacology , Female , Gene Expression Regulation/drug effects , Genitalia/metabolism , Genitalia/pathology , Male , Neoplasms, Gonadal Tissue/chemically induced , Neoplasms, Gonadal Tissue/etiology , Neoplasms, Gonadal Tissue/genetics , Neoplasms, Gonadal Tissue/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL