Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 14(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38539921

ABSTRACT

The genetic characteristics of invasive species have a significant impact on their ability to establish and spread. The blue mussel (Mytilus galloprovincialis), native to the Mediterranean Sea, is a leading invasive species of intertidal coasts throughout much of the world. Here, we used mitochondrial DNA sequence data to investigate the genetic diversity and phylogeographic structure of invasive (M. galloprovincialis) versus native (Mytilus chilensis) populations of blue mussels in Chile. We evaluated whether genetic diversity in invasive populations could be explained by the genetic characteristics of the native sources from which they might be derived. A phylogenetic analysis confirmed two lineages of the invasive M. galloprovincialis, i.e., the NW Atlantic and the Mediterranean lineages. We found no evidence of genetic structure in the invasive range of M. galloprovincialis in Chile, most probably because of its recent arrival. We did, however, detect a spatial mixture of both M. galloprovincialis lineages at sampling locations along the Chilean coast, giving rise to higher levels of genetic diversity in some areas compared to the population of native M. chilensis. The coastal area of the invasion is still small in extent (~100 km on either side of two large ports), which supports the hypothesis of a recent introduction. Further expansion of the distribution range of M. galloprovincialis may be limited to the north by increasing water temperatures and to the south by a natural biogeographic break that may slow or perhaps stop its spread. The use of internal borders as a tool to minimise or prevent M. galloprovincialis spread is therefore a genuine management option in Chile but needs to be implemented rapidly.

2.
Genet Mol Biol ; 45(1): e20210214, 2022.
Article in English | MEDLINE | ID: mdl-35266950

ABSTRACT

Ostrea chilensis (Küster, 1844), the flat oyster, is native to Chile and New Zealand. In Chile, it occurs in a few natural beds, from the northern part of Chiloé Island (41 ºS) to the Guaitecas Archipelago (45 ºS). This bivalve is slow growing, broods its young, and has very limited dispersal potential. The Ostrea chilensis fishery has been over-exploited for a number of decades such that in some locations oysters no longer exist. The aim of this study was to study the genetic diversity of the Chilean flat oyster along its natural distribution to quantify the possible impact of the dredge fishery on wild populations. The genetic structure and diversity of Ostrea chilensis from six natural beds with different histories of fishing activity were estimated. Based on mitochondrial (Cytb) and nuclear (ITS1) DNA sequence variation, our results provide evidence that genetic diversity is different among populations with recent history of wild dredge fishery efforts. We discuss the possible causes of these results. Ultimately, such new information may be used to develop and apply new management measures to promote the sustainable use of this valuable marine resource.

3.
PLoS One ; 16(9): e0256961, 2021.
Article in English | MEDLINE | ID: mdl-34473778

ABSTRACT

Smooth-shelled blue mussels, Mytilus spp., have a worldwide antitropical distribution and are ecologically and economically important. Mussels of the Mytilus edulis species complex have been the focus of numerous taxonomic and biogeographical studies, in particular in the Northern hemisphere, but the taxonomic classification of mussels from South America remains unclear. The present study analysed 348 mussels from 20 sites in Argentina, Chile, Uruguay and the Falkland Islands on the Atlantic and Pacific coasts of South America. We sequenced two mitochondrial locus, Cytochrome c Oxidase subunit I (625 bp) and 16S rDNA (443 bp), and one nuclear gene, ribosomal 18S rDNA (1770 bp). Mitochondrial and nuclear loci were analysed separately and in combination using maximum likelihood and Bayesian inference methods to identify the combination of the most informative dataset and model. Species delimitation using five different models (GMYC single, bGMYC, PTP, bPTP and BPP) revealed that the Mytilus edulis complex in South America is represented by three species: native M. chilensis, M. edulis, and introduced Northern Hemisphere M. galloprovincialis. However, all models failed to delimit the putative species Mytilus platensis. In contrast, however, broad spatial scale genetic structure in South America using Geneland software to analyse COI sequence variation revealed a group of native mussels (putatively M. platensis) in central Argentina and the Falkland Islands. We discuss the scope of species delimitation methods and the use of nuclear and mitochondrial genetic data to the recognition of species within the Mytilus edulis complex at regional and global scales.


Subject(s)
Genetic Variation , Mytilus edulis/classification , Mytilus edulis/genetics , Phylogeny , Animals , Argentina , Base Sequence , Bayes Theorem , Chile , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Falkland Islands , Female , Genes, Mitochondrial , Genetic Loci , Haplotypes , Species Specificity , Uruguay
4.
J Spec Oper Med ; 12(1): 31-36, 2012.
Article in English | MEDLINE | ID: mdl-22427047

ABSTRACT

A team of emergency physicians and nurses from Stanford University responded to the devastating January 2010 earthquake in Haiti. Because of the extreme nature of the situation, combined with limited resources, the team provided not only acute medical and surgical care to critically injured and ill victims, but was required to uniquely expand its scope of practice. Using a narrative format and discussion, it is the purpose of this paper to highlight our experience in Haiti and use these to estimate some of the skills and capabilities that will be useful for physicians who respond to similar future disasters.


Subject(s)
Disaster Planning , Emergency Medical Services , Disasters , Earthquakes , Haiti , Humans
5.
PLoS One ; 5(11): e13670, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21079761

ABSTRACT

Over-exploited fisheries are a common feature of the modern world and a range of solutions including area closures (marine reserves; MRs), effort reduction, gear changes, ecosystem-based management, incentives and co-management have been suggested as techniques to rebuild over-fished populations. Historic accounts of lobster (Jasus frontalis) on the Chilean Juan Fernández Archipelago indicate a high abundance at all depths (intertidal to approximately 165 m), but presently lobsters are found almost exclusively in deeper regions of their natural distribution. Fishers' ecological knowledge (FEK) tells a story of serial depletion in lobster abundance at fishing grounds located closest to the fishing port with an associated decline in catch per unit effort (CPUE) throughout recent history. We have re-constructed baselines of lobster biomass throughout human history on the archipelago using historic data, the fishery catch record and FEK to permit examination of the potential effects of MRs, effort reduction and co-management (stewardship of catch) to restore stocks. We employed a bioeconomic model using FEK, fishery catch and effort data, underwater survey information, predicted population growth and response to MR protection (no-take) to explore different management strategies and their trade-offs to restore stocks and improve catches. Our findings indicate that increased stewardship of catch coupled with 30% area closure (MR) provides the best option to reconstruct historic baselines. Based on model predictions, continued exploitation under the current management scheme is highly influenced by annual fluctuations and unsustainable. We propose a community-based co-management program to implement a MR in order to rebuild the lobster population while also providing conservation protection for marine species endemic to the Archipelago.


Subject(s)
Conservation of Natural Resources/economics , Ecosystem , Fisheries/economics , Palinuridae/growth & development , Algorithms , Animals , Biomass , Chile , Conservation of Natural Resources/methods , Fisheries/methods , Geography , Humans , Models, Biological , Models, Economic , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL