Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(3): 105718, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311173

ABSTRACT

Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.


Subject(s)
DNA-Binding Proteins , Longevity , Phosphates , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Transcription Factors , Gene Expression Regulation, Fungal , Longevity/genetics , Phosphates/deficiency , RNA, Transfer/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Transcriptome , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
mBio ; 15(2): e0306223, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38133430

ABSTRACT

The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.


Subject(s)
Peptide Fragments , Phosphotransferases (Phosphate Group Acceptor) , RNA, Long Noncoding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Thyroglobulin , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Inositol/metabolism , Diphosphates/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , RNA, Long Noncoding/genetics , Membrane Transport Proteins/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Inositol Phosphates/metabolism
3.
RNA ; 29(11): 1738-1753, 2023 11.
Article in English | MEDLINE | ID: mdl-37586723

ABSTRACT

Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA-mediated interference is alleviated by genetic perturbations that elicit precocious lncRNA 3'-processing and transcription termination, such as (i) the inositol pyrophosphate pyrophosphatase-defective asp1-H397A allele, which results in elevated levels of IP8, and (ii) absence of the 14-3-3 protein Rad24. Combining rad24Δ with asp1-H397A causes a severe synthetic growth defect. A forward genetic screen for SRA (Suppressor of Rad24 Asp1-H397A) mutations identified a novel missense mutation (Tyr86Asp) of Pla1, the essential poly(A) polymerase subunit of the fission yeast cleavage and polyadenylation factor (CPF) complex. The pla1-Y86D allele was viable but slow-growing in an otherwise wild-type background. Tyr86 is a conserved active site constituent that contacts the RNA primer 3' nt and the incoming ATP. The Y86D mutation elicits a severe catalytic defect in RNA-primed poly(A) synthesis in vitro and in binding to an RNA primer. Yet, analyses of specific mRNAs indicate that poly(A) tails in pla1-Y86D cells are not different in size than those in wild-type cells, suggesting that other RNA interactors within CPF compensate for the defects of isolated Pla1-Y86D. Transcriptome profiling of pla1-Y86D cells revealed the accumulation of multiple RNAs that are normally rapidly degraded by the nuclear exosome under the direction of the MTREC complex, with which Pla1 associates. We suggest that Pla1-Y86D is deficient in the hyperadenylation of MTREC targets that precedes their decay by the exosome.


Subject(s)
RNA, Long Noncoding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Catalytic Domain , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Long Noncoding/genetics , Mutation , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
4.
RNA ; 29(6): 808-825, 2023 06.
Article in English | MEDLINE | ID: mdl-36882296

ABSTRACT

Fission yeast phosphate homeostasis gene pho1 is actively repressed during growth in phosphate-rich medium by transcription in cis of a long noncoding (lnc) RNA from the 5' flanking prt(nc-pho1) gene. Pho1 expression is: (i) derepressed by genetic maneuvers that favor precocious lncRNA 3'-processing and termination, in response to DSR and PAS signals in prt; and (ii) hyperrepressed in genetic backgrounds that dampen 3'-processing/termination efficiency. Governors of 3'-processing/termination include the RNA polymerase CTD code, the CPF (cleavage and polyadenylation factor) complex, termination factors Seb1 and Rhn1, and the inositol pyrophosphate signaling molecule 1,5-IP8 Here, we present genetic and biochemical evidence that fission yeast Duf89, a metal-dependent phosphatase/pyrophosphatase, is an antagonist of precocious 3'-processing/termination. We show that derepression of pho1 in duf89Δ cells correlates with squelching the production of full-length prt lncRNA and is erased or attenuated by: (i) DSR/PAS mutations in prt; (ii) loss-of-function mutations in components of the 3'-processing and termination machinery; (iii) elimination of the CTD Thr4-PO4 mark; (iv) interdicting CTD prolyl isomerization by Pin1; (v) inactivating the Asp1 kinase that synthesizes IP8; and (vi) loss of the putative IP8 sensor Spx1. The findings that duf89Δ is synthetically lethal with pho1-derepressive mutations CTD-S7A and aps1Δ-and that this lethality is rescued by CTD-T4A, CPF/Rhn1/Pin1 mutations, and spx1Δ-implicate Duf89 more broadly as a collaborator in cotranscriptional regulation of essential fission yeast genes. The duf89-D252A mutation, which abolishes Duf89 phosphohydrolase activity, phenocopied duf89 +, signifying that duf89Δ phenotypes are a consequence of Duf89 protein absence, not absence of Duf89 catalysis.


Subject(s)
RNA, Long Noncoding , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic , Homeostasis/genetics , Phosphates/metabolism , RNA Polymerase II/genetics , Transcription Termination, Genetic
5.
Nucleic Acids Res ; 51(7): 3094-3115, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36794724

ABSTRACT

Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.


Subject(s)
Phosphates , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Phosphates/metabolism , Repressor Proteins/metabolism , Ribosomal Proteins/genetics , RNA, Transfer/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Transcription, Genetic
6.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-36820394

ABSTRACT

Inorganic polyphosphate is a ubiquitous polymer with myriad roles in cell and organismal physiology. Whereas there is evidence for nuclear polyphosphate, its impact on transcriptional regulation in eukaryotes is unkown. Transcriptional profiling of fission yeast cells lacking polyphosphate (via deletion of the catalytic subunit Vtc4 of the Vtc4/Vtc2 polyphosphate polymerase complex) elicited de-repression of four protein-coding genes located within the right sub-telomeric arm of chromosome I that is known to be transcriptionally silenced by the TORC2 complex. These genes were equally de-repressed in vtc2 ∆ cells and in cells expressing polymerase-dead Vtc4, signifying that polyphosphate synthesis is required for repression of these sub-telomeric genes.

7.
mBio ; 13(3): e0103422, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35536002

ABSTRACT

Inositol pyrophosphates (IPPs) are signaling molecules that regulate cellular phosphate homeostasis in diverse eukaryal taxa. In fission yeast, mutations that increase 1,5-IP8 derepress the PHO regulon while mutations that ablate IP8 synthesis are PHO hyper-repressive. Fission yeast Asp1, the principal agent of 1,5-IP8 dynamics, is a bifunctional enzyme composed of an N-terminal IPP kinase domain and a C-terminal IPP pyrophosphatase domain. Here we conducted a biochemical characterization and mutational analysis of the autonomous Asp1 kinase domain (aa 1-385). Reaction of Asp1 kinase with IP6 and ATP resulted in both IP6 phosphorylation to 1-IP7 and hydrolysis of the ATP γ-phosphate, with near-equal partitioning between productive 1-IP7 synthesis and unproductive ATP hydrolysis under optimal kinase conditions. By contrast, reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus ATP hydrolysis. Alanine scanning identified essential constituents of the active site. We deployed the Ala mutants to show that derepression of pho1 expression correlated with Asp1's kinase activity. In the case of full-length Asp1, the activity of the C-terminal pyrophosphatase domain stifled net phosphorylation of the 1-position during reaction of Asp1 with ATP and either IP6 or 5-IP7. We report that inorganic phosphate is a concentration-dependent enabler of net IP8 synthesis by full-length Asp1 in vitro, by virtue of its antagonism of IP8 turnover. IMPORTANCE Expression of the fission yeast phosphate regulon is sensitive to the intracellular level of the inositol pyrophosphate (IPP) signaling molecule 1,5-IP8. IP8 dynamics are determined by Asp1, a bifunctional enzyme comprising N-terminal IPP 1-kinase and C-terminal IPP 1-pyrophosphatase domains that catalyze IP8 synthesis and catabolism, respectively. Here, we interrogated the activities and specificities of the Asp1 kinase domain and full length Asp1. We find that reaction of Asp1 kinase with 5-IP7 is 22-fold faster than with IP6 and is strongly biased in favor of IP8 synthesis versus the significant unproductive ATP hydrolysis seen during its reaction with IP6. We report that full-length Asp1 catalyzes futile cycles of 1-phosphate phosphorylation by its kinase component and 1-pyrophosphate hydrolysis by its pyrophosphatase component that result in unproductive net consumption of the ATP substrate. Net synthesis of 1,5-IP8 is enabled by physiological concentrations of inorganic phosphate that selectively antagonize IP8 turnover.


Subject(s)
Acid Phosphatase , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Adenosine Triphosphate/metabolism , Diphosphates/metabolism , Gene Expression , Inositol Phosphates/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
8.
mBio ; 13(1): e0347621, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35012333

ABSTRACT

Inositol pyrophosphate (IPP) dynamics govern expression of the fission yeast phosphate homeostasis regulon via their effects on lncRNA-mediated transcription interference. The growth defects (ranging from sickness to lethality) elicited by fission yeast mutations that inactivate IPP pyrophosphatase enzymes are exerted via the agonistic effects of too much 1,5-IP8 on RNA 3'-processing and transcription termination. To illuminate determinants of IPP toxicosis, we conducted a genetic screen for spontaneous mutations that suppressed the sickness of Asp1 pyrophosphatase mutants. We identified a missense mutation, C823R, in the essential Cft1 subunit of the cleavage and polyadenylation factor complex that suppresses even lethal Asp1 IPP pyrophosphatase mutations, thereby fortifying the case for 3'-processing/termination as the target of IPP toxicity. The suppressor screen also identified Gde1 and Spx1 (SPAC6B12.07c), both of which have an IPP-binding SPX domain and both of which are required for lethality elicited by Asp1 mutations. A survey of other SPX proteins in the proteome identified the Vtc4 and Vtc2 subunits of the vacuolar polyphosphate polymerase as additional agents of IPP toxicosis. Gde1, Spx1, and Vtc4 contain enzymatic modules (glycerophosphodiesterase, RING finger ubiquitin ligase, and polyphosphate polymerase, respectively) fused to their IPP-sensing SPX domains. Structure-guided mutagenesis of the IPP-binding sites and the catalytic domains of Gde1 and Spx1 indicated that both modules are necessary to elicit IPP toxicity. Whereas Vtc4 polymerase catalytic activity is required for IPP toxicity, its IPP-binding site is not. Epistasis analysis, transcriptome profiling, and assays of Pho1 expression implicate Spx1 as a transducer of IP8 signaling to the 3'-processing/transcription termination machinery. IMPORTANCE Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis. Alleviation of IPP lethality by a missense mutation in the essential Cft1 subunit of the cleavage and polyadenylation factor consolidates previous evidence that toxicity results from IP8 action as an agonist of RNA 3'-processing and transcription termination. Novel findings are that IP8 toxicity depends on IPP-sensing SPX domain proteins with associated enzymatic functions: Gde1 (glycerophosphodiesterase), Spx1 (ubiquitin ligase), and Vtc2/4 (polyphosphate polymerase). The effects of Spx1 deletion on phosphate homeostasis imply a role for Spx1 in communicating an IP8-driven signal to the transcription and RNA processing apparatus.


Subject(s)
Diphosphates , Fungal Proteins , Pyrophosphatases , Schizosaccharomyces , Diphosphates/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Inositol Phosphates/metabolism , Ligases/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , Polyphosphates/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , RNA/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
9.
Nucleic Acids Res ; 50(2): 803-819, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34967420

ABSTRACT

Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA control of pho1 mRNA synthesis is influenced by inositol pyrophosphate (IPP) kinase Asp1, deletion of which results in pho1 hyper-repression. A forward genetic screen for ADS (Asp1 Deletion Suppressor) mutations identified the 14-3-3 protein Rad24 as a governor of phosphate homeostasis. Production of full-length interfering prt lncRNA was squelched in rad24Δ cells, concomitant with increased production of pho1 mRNA and increased Pho1 activity, while shorter precociously terminated non-interfering prt transcripts persisted. Epistasis analysis showed that pho1 de-repression by rad24Δ depends on: (i) 3'-processing and transcription termination factors CPF, Pin1, and Rhn1; and (ii) Threonine-4 of the Pol2 CTD. Combining rad24Δ with the IPP pyrophosphatase-dead asp1-H397A allele caused a severe synthetic growth defect that was ameliorated by loss-of-function mutations in CPF, Pin1, and Rhn1, and by CTD phospho-site mutations T4A and Y1F. Rad24 function in repressing pho1 was effaced by mutation of its phosphate-binding pocket. Our findings instate a new role for a 14-3-3 protein as an antagonist of precocious RNA 3'-processing/termination.


Subject(s)
14-3-3 Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation, Fungal , Intracellular Signaling Peptides and Proteins/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Transcription, Genetic , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Amino Acid Sequence , Cell Cycle Proteins/chemistry , Chromosome Mapping , Gene Expression Profiling , Intracellular Signaling Peptides and Proteins/chemistry , Models, Molecular , Mutagenesis , Mutation , Protein Subunits/genetics , Protein Subunits/metabolism , RNA Interference , RNA, Long Noncoding/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Sequence Deletion , Structure-Activity Relationship , Synthetic Lethal Mutations , Transcription Termination, Genetic , Whole Genome Sequencing
10.
Bio Protoc ; 11(20): e4198, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34761070

ABSTRACT

The fission yeast Schizosaccharomyces pombe is an excellent genetically tractable model organism used in the study of conserved eukaryotic cellular biology. One genetic tool in the assessment of gene function is the in vivo overexpression of proteins. Existing overexpression tools have limitations of induction kinetics, dynamic range, and/or system-wide changes due to the induction conditions or inducer. Here, I describe the methodology for the use of a plasmid-based long non-coding RNA (lncRNA)-regulated overexpression system that is induced by the addition of thiamine. This system, termed the pTIN-system (thiamine inducible), utilizes the fast repression kinetics of the thiamine-regulated nmt1 + promoter integrated with the lncRNA regulated tgp1 + promoter. The advantages of the pTIN-system are rapid induction kinetics of gene expression, broad dynamic range, and tunable expression.

11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389684

ABSTRACT

The system of long noncoding RNA (lncRNA)-mediated transcriptional interference that represses fission yeast phosphate homoeostasis gene pho1 provides a sensitive readout of genetic influences on cotranscriptional 3'-processing and termination and a tool for discovery of regulators of this phase of the Pol2 transcription cycle. Here, we conducted a genetic screen for relief of transcriptional interference that unveiled a mechanism by which Pol2 termination is enhanced via a gain-of-function mutation, G476S, in the RNA-binding domain of an essential termination factor, Seb1. The genetic and physical evidence for gain-of-function is compelling: 1) seb1-G476S de-represses pho1 and tgp1, both of which are subject to lncRNA-mediated transcriptional interference; 2) seb1-G476S elicits precocious lncRNA transcription termination in response to lncRNA 5'-proximal poly(A) signals; 3) seb1-G476S derepression of pho1 is effaced by loss-of-function mutations in cleavage and polyadenylation factor (CPF) subunits and termination factor Rhn1; 4) synthetic lethality of seb1-G476S with pho1 derepressive mutants rpb1-CTD-S7A and aps1∆ is rescued by CPF/Rhn1 loss-of-function alleles; and 5) seb1-G476S elicits an upstream shift in poly(A) site preference in several messenger RNA genes. A crystal structure of the Seb1-G476S RNA-binding domain indicates potential for gain of contacts from Ser476 to RNA nucleobases. To our knowledge, this is a unique instance of a gain-of-function phenotype in a eukaryal transcription termination protein.


Subject(s)
Fungal Proteins/metabolism , Gain of Function Mutation , Gene Expression Regulation, Fungal/physiology , Schizosaccharomyces/metabolism , Cell Survival , Diphosphates/metabolism , Fungal Proteins/genetics , Protein Subunits , RNA, Long Noncoding , Schizosaccharomyces/genetics , Transcription Termination, Genetic
12.
PLoS Genet ; 17(3): e1009452, 2021 03.
Article in English | MEDLINE | ID: mdl-33711009

ABSTRACT

Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Protein Interaction Domains and Motifs , Protein Phosphatase 1/metabolism , Schizosaccharomyces/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , Alleles , Amino Acid Sequence , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Fungal , Models, Biological , Mutation , Phenotype , Phosphorylation , Transcription, Genetic , Transcriptome , mRNA Cleavage and Polyadenylation Factors/chemistry
13.
RNA ; 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33579781

ABSTRACT

The carboxyl-terminal domain (CTD) of RNA polymerase II (Pol2) consists of tandem repeats of a consensus heptapeptide Y1 S2 P3 T4 S5 P6 S7 The CTD recruits numerous proteins that drive or regulate gene expression. The trafficking of CTD-interacting proteins is orchestrated by remodeling CTD primary structure via Ser/Thr/Tyr phosphorylation and proline cis-trans isomerization, which collectively inscribe a CTD code. The fission yeast CTD consists of 29 heptad repeats. To decipher the output of the fission yeast CTD code, we genetically manipulated CTD length and amino acid content and then gauged the effects of these changes on gene expression. Whereas deleting 11 consensus heptads has no obvious effect on fission yeast growth, RNA-seq revealed that 25% of the protein-coding transcripts were dysregulated by CTD truncation. We profiled the transcriptomes of full-length CTD mutants, in which: all Tyr1 residues were replaced by Phe; all Ser2, Thr4, or Ser7 positions were changed to Ala; and half of the essential CTD code "letters" Pro3, Ser5, and Pro6 were mutated to Ala. Overlapping RNA-seq profiles suggested that a quarter of the complement of up-regulated mRNAs and half of the down-regulated mRNAs seen in full-length CTD mutants might be attributable to a decrement in wild-type CTD heptad number. Concordant mutant-specific transcriptional profiles were observed for Y1F, S2A, and T4A cells, and for P6•P6A and S5•S5A cells, suggesting that Tyr1-Ser2-Thr4 and Ser5-Pro6 comprise distinct "words" in the fission yeast CTD code. The phosphate regulon, which is repressed by lncRNA-mediated transcription interference, is de-repressed by CTD mutations P6•P6A and S5•S5A. De-repression of pho1 in P6•P6A and S5•S5A cells depends on cleavage and polyadenylation factor subunits Swd22 and Ppn1 and transcription termination factor Rhn1, signifying that Pro6 and Ser5 mutations elicit precocious lncRNA 3'-processing/termination.

14.
Nucleic Acids Res ; 48(19): 10739-10752, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33010152

ABSTRACT

Fission yeast phosphate homeostasis genes are repressed in phosphate-rich medium by transcription of upstream lncRNAs that interferes with activation of the flanking mRNA promoters. lncRNA control of PHO gene expression is influenced by the Thr4 phospho-site in the RNA polymerase II CTD and the 3' processing/termination factors CPF and Rhn1, mutations of which result in hyper-repression of the PHO regulon. Here, we performed a forward genetic screen for mutations that de-repress Pho1 acid phosphatase expression in CTD-T4A cells. Sequencing of 18 independent STF (Suppressor of Threonine Four) isolates revealed, in every case, a mutation in the C-terminal pyrophosphatase domain of Asp1, a bifunctional inositol pyrophosphate (IPP) kinase/pyrophosphatase that interconverts 5-IP7 and 1,5-IP8. Focused characterization of two STF strains identified 51 coding genes coordinately upregulated vis-à-vis the parental T4A strain, including all three PHO regulon genes (pho1, pho84, tgp1). Whereas these STF alleles-asp1-386(Stop) and asp1-493(Stop)-were lethal in a wild-type CTD background, they were viable in combination with mutations in CPF and Rhn1, in which context Pho1 was also de-repressed. Our findings implicate Asp1 pyrophosphatase in constraining 1,5-IP8 or 1-IP7 synthesis by Asp1 kinase, without which 1-IPPs can accumulate to toxic levels that elicit precocious termination by CPF/Rhn1.


Subject(s)
Acid Phosphatase/genetics , Cytoskeletal Proteins/genetics , DNA Polymerase II/genetics , Inositol Phosphates/metabolism , Mutation , RNA, Long Noncoding/genetics , Schizosaccharomyces pombe Proteins/genetics , Acid Phosphatase/metabolism , Catalytic Domain , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/metabolism , DNA Polymerase II/chemistry , DNA Polymerase II/metabolism , Gene Expression Regulation, Fungal , Multifunctional Enzymes , Pyrophosphatases , Regulon , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Synthetic Lethal Mutations , Transcription Termination, Genetic , Up-Regulation
15.
RNA ; 26(11): 1743-1752, 2020 11.
Article in English | MEDLINE | ID: mdl-32788323

ABSTRACT

The fission yeast Schizosaccharomyces pombe is an excellent model organism for the study of eukaryotic cellular physiology. The organism is genetically tractable and several tools to study the functions of individual genes are available. One such tool is regulatable gene expression and overproduction of proteins. Limitations of currently available overexpression systems include delay in expression after induction, narrow dynamic range, and system-wide changes due to induction conditions. Here I describe a new long noncoding RNA (lncRNA)-regulated, thiamine-inducible expression system that integrates lncRNA-based transcriptional interference at the fission yeast tgp1 promoter with the fast repression kinetics of the thiamine-repressible nmt1 promoter. This hybrid system has rapid induction kinetics, broad dynamic range, and tunable expression via thiamine concentration. The lncRNA-regulated thiamine-inducible system will be advantageous for the study of individual genes and for potential applications in the production of heterologous proteins in fission yeast.


Subject(s)
RNA, Long Noncoding/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Thiamine/pharmacology , Gene Expression Regulation, Fungal , Genetic Vectors , Kinetics , Membrane Transport Proteins/genetics , Promoter Regions, Genetic , RNA, Fungal/genetics
16.
Nucleic Acids Res ; 48(9): 4811-4826, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32282918

ABSTRACT

The phosphorylation pattern of Pol2 CTD Y1S2P3T4S5P6S7 repeats comprises an informational code coordinating transcription and RNA processing. cis-trans isomerization of CTD prolines expands the scope of the code in ways that are not well understood. Here we address this issue via analysis of fission yeast peptidyl-prolyl isomerase Pin1. A pin1Δ allele that does not affect growth per se is lethal in the absence of cleavage-polyadenylation factor (CPF) subunits Ppn1 and Swd22 and elicits growth defects absent CPF subunits Ctf1 and Dis2 and termination factor Rhn1. Whereas CTD S2A, T4A, and S7A mutants thrive in combination with pin1Δ, a Y1F mutant does not, nor do CTD mutants in which half the Pro3 or Pro6 residues are replaced by alanine. Phosphate-acquisition genes pho1, pho84 and tgp1 are repressed by upstream lncRNAs and are sensitive to changes in lncRNA 3' processing/termination. pin1Δ hyper-represses PHO gene expression and erases the de-repressive effect of CTD-S7A. Transcriptional profiling delineated sets of 56 and 22 protein-coding genes that are down-regulated and up-regulated in pin1Δ cells, respectively, 77% and 100% of which are downregulated/upregulated when the cis-proline-dependent Ssu72 CTD phosphatase is inactivated. Our results implicate Pin1 as a positive effector of 3' processing/termination that acts via Ssu72.


Subject(s)
Cell Cycle Proteins/genetics , Gene Expression Regulation, Fungal , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/genetics , Phosphoprotein Phosphatases/genetics , RNA 3' End Processing , Schizosaccharomyces pombe Proteins/genetics , Transcription Termination, Genetic , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Gene Deletion , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Nuclear Proteins/genetics , Peptidylprolyl Isomerase/chemistry , Peptidylprolyl Isomerase/metabolism , Phosphates/metabolism , Phosphorylation , Protein Domains/genetics , Pyrophosphatases/genetics , RNA Polymerase II/genetics , RNA-Seq , Regulon , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Serine/metabolism , Threonine/metabolism
17.
Nucleic Acids Res ; 47(16): 8452-8469, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31276588

ABSTRACT

Fission yeast phosphate acquisition genes pho1, pho84, and tgp1 are repressed in phosphate-rich medium by transcription of upstream lncRNAs. Here, we show that phosphate homeostasis is subject to metabolite control by inositol pyrophosphates (IPPs), exerted through the 3'-processing/termination machinery and the Pol2 CTD code. Increasing IP8 (via Asp1 IPP pyrophosphatase mutation) de-represses the PHO regulon and leads to precocious termination of prt lncRNA synthesis. pho1 de-repression by IP8 depends on cleavage-polyadenylation factor (CPF) subunits, termination factor Rhn1, and the Thr4 letter of the CTD code. pho1 de-repression by mutation of the Ser7 CTD letter depends on IP8. Simultaneous inactivation of the Asp1 and Aps1 IPP pyrophosphatases is lethal, but this lethality is suppressed by mutations of CPF subunits Ppn1, Swd22, Ssu72, and Ctf1 and CTD mutation T4A. Failure to synthesize IP8 (via Asp1 IPP kinase mutation) results in pho1 hyper-repression. Synthetic lethality of asp1Δ with Ppn1, Swd22, and Ssu72 mutations argues that IP8 plays an important role in essential 3'-processing/termination events, albeit in a manner genetically redundant to CPF. Transcriptional profiling delineates an IPP-responsive regulon composed of genes overexpressed when IP8 levels are increased. Our results establish a novel role for IPPs in cell physiology.


Subject(s)
Acid Phosphatase/genetics , Gene Expression Regulation, Fungal , Inositol Phosphates/metabolism , Regulon , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/genetics , Transcription Termination, Genetic , Acid Phosphatase/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/genetics , Gene Deletion , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multifunctional Enzymes , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyrophosphatases/deficiency , Pyrophosphatases/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism
18.
Mol Cell Biol ; 39(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31010807

ABSTRACT

Pho7 is the Schizosaccharomyces pombe fission yeast Zn2Cys6 transcriptional factor that drives a response to phosphate starvation in which phosphate acquisition genes are upregulated. Here we report a crystal structure at 1.6-Å resolution of the Pho7 DNA-binding domain (DBD) bound at its target site 2 in the pho1 promoter (5'-TCGGAAATTAAAAA). Comparison to the previously reported structure of Pho7 DBD in complex with its binding site in the tgp1 promoter (5'-TCGGACATTCAAAT) reveals shared determinants of target site specificity as well as variations in the protein-DNA interface that accommodate different promoter DNA sequences. Mutagenesis of Pho7 amino acids at the DNA interface identified nucleobase contacts at the periphery of the footprint that are essential for the induction of pho1 expression in response to phosphate starvation and for Pho7 binding to site 1 in the pho1 promoter.


Subject(s)
Acid Phosphatase/genetics , DNA-Binding Proteins/chemistry , Phosphates/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Acid Phosphatase/metabolism , Binding Sites , Crystallography, X-Ray , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Homeostasis , Membrane Transport Proteins/genetics , Models, Molecular , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Transcription Factors/genetics
19.
Nucleic Acids Res ; 46(21): 11262-11273, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30212894

ABSTRACT

Pho7, a member of the Zn2Cys6 family of fungal transcription factors, is the key transcriptional activator underlying fission yeast phosphate homeostasis, a physiological response to phosphate starvation in which the pho1, pho84 and tgp1 genes are upregulated. Here, we delineated a minimized 61-amino-acid Pho7 DNA-binding domain (DBD) and determined the 1.7 Å crystal structure of the DBD at its target site in the tgp1 promoter. Two distinctive features of the Pho7 DBD are: it binds DNA as a monomer, unlike most other fungal zinc-cluster factors that bind as homodimers; and it makes extensive interactions with its asymmetric target sequence over a 14-bp footprint that entails hydrogen bonding to 13 individual bases within, and remote from, the CGG triplet typically recognized by other Zn2Cys6 DBDs. Base pair substitutions at Pho7 sites in the tgp1 and pho1 promoters highlight the importance of the 5'-CGG triplet for Pho7 binding in vitro and Pho7-dependent gene expression in vivo. We identify several DBD amino acids at which alanine substitution effaced or attenuated the pho1 phosphate starvation response and concordantly reduced Pho7 binding to a pho1 promoter site.


Subject(s)
DNA, Fungal/metabolism , Homeostasis , Phosphates/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Transcription Factors/metabolism , Crystallography, X-Ray , DNA, Fungal/chemistry , DNA, Fungal/genetics , Gene Expression Regulation, Fungal , Models, Molecular , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Protein Domains , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
20.
J Biol Chem ; 293(12): 4456-4467, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29414789

ABSTRACT

The expression of the phosphate transporter Pho84 in fission yeast Schizosaccharomyces pombe is repressed in phosphate-rich medium and induced during phosphate starvation. Two other phosphate-responsive genes in S. pombe (pho1 and tgp1) had been shown to be repressed in cis by transcription of a long noncoding (lnc) RNA from the upstream flanking gene, but whether pho84 expression is regulated in this manner is unclear. Here, we show that repression of pho84 is enforced by transcription of the SPBC8E4.02c locus upstream of pho84 to produce a lncRNA that we name prt2 ( pho-repressive transcript 2). We identify two essential elements of the prt2 promoter, a HomolD box and a TATA box, mutations of which inactivate the prt2 promoter and de-repress the downstream pho84 promoter under phosphate-replete conditions. We find that prt2 promoter inactivation also elicits a cascade effect on the adjacent downstream prt (lncRNA) and pho1 (acid phosphatase) genes, whereby increased pho84 transcription down-regulates prt lncRNA transcription and thereby de-represses pho1 Our results establish a unified model for the repressive arm of fission yeast phosphate homeostasis, in which transcription of prt2, prt, and nc-tgp1 lncRNAs interferes with the promoters of the flanking pho84, pho1, and tgp1 genes, respectively.


Subject(s)
Gene Expression Regulation, Fungal , Phosphate Transport Proteins/metabolism , RNA, Long Noncoding/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Transcription, Genetic , Base Sequence , Homeostasis , Mutation , Phosphate Transport Proteins/genetics , Phosphates/metabolism , Promoter Regions, Genetic , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...