Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 75(5): 1279-1288, 2020 05.
Article in English | MEDLINE | ID: mdl-32172624

ABSTRACT

Ceramides are sphingolipids that modulate a variety of cellular processes via 2 major mechanisms: functioning as second messengers and regulating membrane biophysical properties, particularly lipid rafts, important signaling platforms. Altered sphingolipid levels have been implicated in many cardiovascular diseases, including hypertension, atherosclerosis, and diabetes mellitus-related conditions; however, molecular mechanisms by which ceramides impact endothelial functions remain poorly understood. In this regard, we generated mice defective of endothelial sphingolipid de novo biosynthesis by deleting the Sptlc2 (long chain subunit 2 of serine palmitoyltransferase)-the first enzyme of the pathway. Our study demonstrated that endothelial sphingolipid de novo production is necessary to regulate (1) signal transduction in response to NO agonists and, mainly via ceramides, (2) resting eNOS (endothelial NO synthase) phosphorylation, and (3) blood pressure homeostasis. Specifically, our findings suggest a prevailing role of C16:0-Cer in preserving vasodilation induced by tyrosine kinase and GPCRs (G-protein coupled receptors), except for Gq-coupled receptors, while C24:0- and C24:1-Cer control flow-induced vasodilation. Replenishing C16:0-Cer in vitro and in vivo reinstates endothelial cell signaling and vascular tone regulation. This study reveals an important role of locally produced ceramides, particularly C16:0-, C24:0-, and C24:1-Cer in vascular and blood pressure homeostasis, and establishes the endothelium as a key source of plasma ceramides. Clinically, specific plasma ceramides ratios are independent predictors of major cardiovascular events. Our data also suggest that plasma ceramides might be indicative of the diseased state of the endothelium.


Subject(s)
Blood Pressure/physiology , Ceramides/physiology , Endothelial Cells/metabolism , Nitric Oxide/physiology , Signal Transduction , Sphingolipids/biosynthesis , Acetylcholine/pharmacology , Animals , Cell Adhesion Molecules/metabolism , Cells, Cultured , Histamine/pharmacology , Homeostasis , Male , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Nitric Oxide/agonists , Nitric Oxide Synthase Type III/metabolism , Nitroprusside/pharmacology , Phosphoproteins/metabolism , Serine C-Palmitoyltransferase/deficiency , Vascular Endothelial Growth Factor Receptor-2/physiology , Vasoconstriction/drug effects , Vasoconstriction/physiology , Vasodilation/drug effects , Vasodilation/physiology
2.
Interact Cardiovasc Thorac Surg ; 29(4): 561-567, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31157868

ABSTRACT

OBJECTIVES: Both the open and endovascular techniques are commonly used for harvesting the radial artery (ORAH and ERAH, respectively), and yet, very little is known about the effects of these 2 techniques on endothelial integrity and function of the radial artery (RA). The aim of this study was to assess the endothelial integrity and function of RA harvested using the 2 approaches. METHODS: Two independent surgical teams working in the same institution routinely use the RA for coronary artery bypass grafting exclusively employing either ORAH or ERAH. Thirty-nine consecutive patients were enrolled in this comparative study. Endothelial function after ORAH or ERAH was assessed by using the wire myograph system. The integrity of the RA endothelium was evaluated by immunohistochemical staining for erythroblast transformation specific-related gene. RESULTS: The vasodilation in response to acetylcholine was significantly higher in RA harvested with ORAH (P ≤ 0.001 versus ERAH). Endothelial integrity was not different between the 2 groups. CONCLUSIONS: ORAH is associated with a significantly higher endothelium-dependent vasodilation. Further investigation on the potential implications of these findings in terms of graft spasm and patency as well as clinical outcomes are needed.


Subject(s)
Coronary Artery Bypass , Endoscopy , Endovascular Procedures , Radial Artery/transplantation , Tissue and Organ Harvesting , Aged , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Female , Humans , Male , Middle Aged , Radial Artery/pathology , Radial Artery/physiopathology , Vasodilation
3.
Hypertension ; 70(2): 426-434, 2017 08.
Article in English | MEDLINE | ID: mdl-28607130

ABSTRACT

Nitric oxide is one of the major endothelial-derived vasoactive factors that regulate blood pressure (BP), and the bioactive lipid mediator S1P (sphingosine-1-phosphate) is a potent activator of endothelial nitric oxide synthase through G protein-coupled receptors. Endothelial-derived S1P and the autocrine/paracrine activation of S1PR (S1P receptors) play an important role in preserving vascular functions and BP homeostasis. Furthermore, FTY720 (fingolimod), binding to 4 out of 5 S1PRs recently approved by the Food and Drug Administration to treat autoimmune conditions, induces a modest and transient decrease in heart rate in both animals and humans, suggesting that drugs targeting sphingolipid signaling affect cardiovascular functions in vivo. However, the role of specific S1P receptors in BP homeostasis remains unknown. The aim of this study is to determine the role of the key vascular S1P receptors, namely, S1PR1 and S1PR3, in BP regulation in physiological and hypertensive conditions. The specific loss of endothelial S1PR1 decreases basal and stimulated endothelial-derived nitric oxide and resets BP to a higher-than-normal value. Interestingly, we identified a novel and important role for S1PR1 signaling in flow-mediated mechanotransduction. FTY720, acting as functional antagonist of S1PR1, markedly decreases endothelial S1PR1, increases BP in control mice, and exacerbates hypertension in angiotensin II mouse model, underlining the antihypertensive functions of S1PR1 signaling. Our study identifies S1P-S1PR1-nitric oxide signaling as a new regulatory pathway in vivo of vascular relaxation to flow and BP homeostasis, providing a novel therapeutic target for the treatment of hypertension.


Subject(s)
Blood Pressure/physiology , Fingolimod Hydrochloride/pharmacology , Hypertension , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Receptors, Lysosphingolipid , Animals , Blood Pressure/drug effects , Disease Models, Animal , Endothelial Cells/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Immunosuppressive Agents/pharmacology , Mice , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Sphingosine-1-Phosphate Receptors
4.
Diabetes Obes Metab ; 18(12): 1236-1243, 2016 12.
Article in English | MEDLINE | ID: mdl-27460695

ABSTRACT

AIM: To test the effect of linagliptin in non-obese diabetic (NOD) mice, a murine model of type 1 diabetes, to unveil a possible direct cardiovascular action of dipeptidyl peptidase 4 (DPP-4) inhibitors beyond glycaemia control. METHODS: NOD mice were grouped according to glycosuria levels as NODI: none; NODII: high; NODIII: severe. Linagliptin treatment was initiated once they reached NODII levels. Vascular reactivity was assessed ex vivo on aorta harvested from mice upon reaching NODIII level. In a separate set of experiments, the effect of linagliptin was tested directly in vitro on vessels harvested from untreated NODIII, glucagon-like peptide-1 (GLP-1) receptor knockout and soluble guanylyl cyclase-α1 knockout mice. Molecular and cellular studies were performed on endothelial and endothelial nitric oxide synthase (eNOS)-transfected cells. RESULTS: In this ex vivo vascular study, endothelium-dependent vasorelaxation was ameliorated and eNOS/nitric oxide (NO)/soluble guanylyl cyclase (sGC) signalling was enhanced. In the in vitro vascular study, linagliptin exerted a direct vasodilating activity on vessels harvested from both normo- or hyperglycaemic mice. The effect was independent from GLP-1/GLP-1 receptor (GLP-1R) interaction and required eNOS/NO/sGC pathway activation. Molecular studies performed on endothelial cells show that linagliptin rescues eNOS from caveolin-1 (CAV-1)-binding in a calcium-independent manner. CONCLUSION: Linagliptin, by interfering with the protein-protein interaction CAV-1/eNOS, led to an increased eNOS availability, thus enhancing NO production. This mechanism accounts for the vascular effect of linagliptin that is independent from glucose control and GLP-1/GLP-1R interaction.


Subject(s)
Aorta/drug effects , Caveolin 1/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Linagliptin/pharmacology , Nitric Oxide Synthase Type III/drug effects , Vasodilation/drug effects , Animals , Blood Glucose/metabolism , Blood Vessels/drug effects , Caveolin 1/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Mice , Mice, Inbred NOD , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Soluble Guanylyl Cyclase/genetics
5.
Br J Pharmacol ; 173(9): 1556-65, 2016 May.
Article in English | MEDLINE | ID: mdl-26890936

ABSTRACT

BACKGROUND AND PURPOSE: Hydrogen sulfide (H2S) is a gasotransmitter produced from L-cysteine through the enzymatic action of cystathionine-γ-lyase (CSE) and/or cystathionine-ß-synthase. D-Penicillamine is the d isomer of a dimethylated cysteine and has been used for the treatment of rheumatoid arthritis. AsD-penicillamine is structurally very similar to cysteine, we have investigated whether D-penicillamine, as a cysteine analogue, has an effect on the H2 S pathway. EXPERIMENTAL APPROACH: We tested the effect of D-penicillamine (0.01-1 mM) in mouse aortic rings mounted in isolated organ baths and determined whether it could affect H2 S biosynthesis. In particular, we investigated any possible inhibitor or donor behaviour by using recombinant enzyme-based assays and an in vivo approach. KEY RESULTS: D-Penicillamine, per se, showed little or no vasodilator effect, and it cannot be metabolized as a substrate in place of l-cysteine. However, d-penicillamine significantly reduced L-cysteine-induced vasodilatation in a concentration-dependent manner through inhibition of H2 S biosynthesis, and this effect occurred at concentrations 10 times lower than those needed to induce the release of H2 S. In particular, D-penicillamine selectively inhibited CSE in a pyridoxal-5'-phosphate-dependent manner. CONCLUSIONS AND IMPLICATIONS: Taken together, our results suggest that D-penicillamine acts as a selective CSE inhibitor, leading to new perspectives in the design and use of specific pharmacological tools for H2 S research. In addition, the inhibitory effect of D-penicillamine on CSE could account for its beneficial action in rheumatoid arthritis patients, where H2 S has been shown to have a detrimental effect.


Subject(s)
Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Penicillamine/pharmacology , Signal Transduction/drug effects , Animals , Cystathionine gamma-Lyase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Male , Mice , Penicillamine/chemistry , Structure-Activity Relationship
6.
Am J Physiol Heart Circ Physiol ; 309(1): H114-26, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25934094

ABSTRACT

GPBAR1 is a bile acid-activated receptor (BAR) for secondary bile acids, lithocholic (LCA) and deoxycholic acid (DCA), expressed in the enterohepatic tissues and in the vasculature by endothelial and smooth muscle cells. Despite that bile acids cause vasodilation, it is unclear why these effects involve GPBAR1, and the vascular phenotype of GPBAR1 deficient mice remains poorly defined. Previous studies have suggested a role for nitric oxide (NO) in regulatory activity exerted by GPBAR1 in liver endothelial cells. Hydrogen sulfide (H2S) is a vasodilatory agent generated in endothelial cells by cystathionine-γ-lyase (CSE). Here we demonstrate that GPBAR1 null mice had increased levels of primary and secondary bile acids and impaired vasoconstriction to phenylephrine. In aortic ring preparations, vasodilation caused by chenodeoxycholic acid (CDCA), a weak GPBAR1 ligand and farnesoid-x-receptor agonist (FXR), was iberiotoxin-dependent and GPBAR1-independent. In contrast, vasodilation caused by LCA was GPBAR1 dependent and abrogated by propargyl-glycine, a CSE inhibitor, and by 5ß-cholanic acid, a GPBAR1 antagonist, but not by N(5)-(1-iminoethyl)-l-ornithine (l-NIO), an endothelial NO synthase inhibitor, or iberiotoxin, a large-conductance calcium-activated potassium (BKCa) channels antagonist. In venular and aortic endothelial (HUVEC and HAEC) cells GPBAR1 activation increases CSE expression/activity and H2S production. Two cAMP response element binding protein (CREB) sites (CREs) were identified in the CSE promoter. In addition, TLCA stimulates CSE phosphorylation on serine residues. In conclusion we demonstrate that GPBAR1 mediates the vasodilatory activity of LCA and regulates the expression/activity of CSE. Vasodilation caused by CDCA involves BKCa channels. The GPBAR1/CSE pathway might contribute to endothelial dysfunction and hyperdynamic circulation in liver cirrhosis.


Subject(s)
Aorta/metabolism , Bile Acids and Salts/metabolism , Cystathionine gamma-Lyase/genetics , Hydrogen Sulfide/metabolism , Receptors, G-Protein-Coupled/genetics , Vasodilation/genetics , Animals , Aorta/drug effects , Bile Acids and Salts/pharmacology , Chenodeoxycholic Acid/pharmacology , Cholic Acids/pharmacology , Cystathionine gamma-Lyase/metabolism , Endothelial Cells , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Lithocholic Acid/pharmacology , Mice, Knockout , Ornithine/analogs & derivatives , Ornithine/pharmacology , Peptides/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...