Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38542161

ABSTRACT

Photodynamic therapy (PDT) relies on the combined action of a photosensitizer (PS), light at an appropriate wavelength, and oxygen, to produce reactive oxygen species (ROS) that lead to cell death. However, this therapeutic modality presents some limitations, such as the poor water solubility of PSs and their limited selectivity. To overcome these problems, research has exploited nanoparticles (NPs). This project aimed to synthesize a PS, belonging to the BODIPY family, covalently link it to two NPs that differ in their lipophilic character, and then evaluate their photodynamic activity on SKOV3 and MCF7 tumor cell lines. Physicochemical analyses demonstrated that both NPs are suitable for PDT, as they are resistant to photobleaching and have good singlet oxygen (1O2) production. In vitro biological analyses showed that BODIPY has greater photodynamic activity in the free form than its NP-bounded counterpart, probably due to greater cellular uptake. To evaluate the main mechanisms involved in PDT-induced cell death, flow cytometric analyses were performed and showed that free BODIPY mainly induced necrosis, while once bound to NP, it seemed to prefer apoptosis. A scratch wound healing test indicated that all compounds partially inhibited cellular migration of SKOV3 cells.


Subject(s)
Nanoparticles , Photochemotherapy , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemistry , Cell Line, Tumor , Oxygen
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542365

ABSTRACT

Photodynamic therapy (PDT) is a therapeutic option for cancer, in which photosensitizer (PS) drugs, light, and molecular oxygen generate reactive oxygen species (ROS) and induce cell death. First- and second-generation PSs presented with problems that hindered their efficacy, including low solubility. Thus, second-generation PSs loaded into nanocarriers were produced to enhance their cellular uptake and therapeutic efficacy. Among other compounds investigated, the dye methylene blue (MB) showed potential as a PS, and its photodynamic activity in tumor cells was reported even in its nanocarrier-delivered form, including liposomes. Here, we prepared polydopamine (PDA)-coated liposomes and efficiently adsorbed MB onto their surface. lipoPDA@MB vesicles were first physico-chemically characterized and studies on their light stability and on the in vitro release of MB were performed. Photodynamic effects were then assessed on a panel of 2D- and 3D-cultured cancer cell lines, comparing the results with those obtained using free MB. lipoPDA@MB uptake, type of cell death induced, and ability to generate ROS were also investigated. Our results show that lipoPDA@MB possesses higher photodynamic potency compared to MB in both 2D and 3D cell models, probably thanks to its higher uptake, ROS production, and apoptotic cell death induction. Therefore, lipoPDA@MB appears as an efficient drug delivery system for MB-based PDT.


Subject(s)
Indoles , Photochemotherapy , Polymers , Photochemotherapy/methods , Liposomes , Methylene Blue/pharmacology , Methylene Blue/chemistry , Reactive Oxygen Species , Photosensitizing Agents/chemistry , Cell Line, Tumor
3.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542921

ABSTRACT

Photodynamic therapy (PDT) is a minimally invasive treatment that uses the combination of a photosensitizing agent (PS) and light to selectively target solid tumors, as well as several non-neoplastic proliferating cell diseases. After systemic administration, PSs are activated by localized irradiation with visible light; in the presence of adequate concentrations of molecular oxygen, this causes the formation of reactive oxygen species (ROS) and subsequent tissue damage. In this study, two series of tetrakis(N-alkylpyridinium-4-yl)porphyrins were synthesized, differing in the presence or absence of a zinc ion in the tetrapyrrole nucleus, as well as in the N-alkyl chain length (from one to twelve carbon atoms). The compounds were chemically characterized, and their effect on cell viability was evaluated using a panel of three tumor cell lines to determine a possible relationship between photodynamic activity and Zn presence/alkyl chain length. The types of cell death mechanisms involved in the effect of the various PSs were also evaluated. The obtained results indicate that the most effective porphyrin is the Zn-porphyrin, with a pendant made up of eight carbon atoms (Zn-C8).


Subject(s)
Photochemotherapy , Porphyrins , Porphyrins/pharmacology , Porphyrins/chemistry , Photosensitizing Agents/chemistry , Light , Carbon
4.
Molecules ; 28(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005258

ABSTRACT

Photodynamic therapy (PDT) is an anticancer/antibacterial strategy in which photosensitizers (PSs), light, and molecular oxygen generate reactive oxygen species and induce cell death. PDT presents greater selectivity towards tumor cells than conventional chemotherapy; however, PSs have limitations that have prompted the search for new molecules featuring more favorable chemical-physical characteristics. Curcumin and its derivatives have been used in PDT. However, low water solubility, rapid metabolism, interference with other drugs, and low stability limit curcumin use. Chemical modifications have been proposed to improve curcumin activity, and metal-based PSs, especially ruthenium(II) complexes, have attracted considerable attention. This study aimed to characterize six Ru(II)-arene curcuminoids for anticancer and/or antibacterial PDT. The hydrophilicity, photodegradation rates, and singlet oxygen generation of the compounds were evaluated. The photodynamic effects on human colorectal cancer cell lines were also assessed, along with the ability of the compounds to induce ROS production, apoptotic, necrotic, and/or autophagic cell death. Overall, our encouraging results indicate that the Ru(II)-arene curcuminoid derivatives are worthy of further investigation and could represent an interesting option for cancer PDT. Additionally, the lack of significant in vivo toxicity on the larvae of Galleria mellonella is an important finding. Finally, the photoantimicrobial activity of HCurc I against Gram-positive bacteria is indeed promising.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Photochemotherapy , Ruthenium , Humans , Photosensitizing Agents/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Curcumin/pharmacology , Diarylheptanoids , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Dalton Trans ; 52(32): 11349-11360, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37530512

ABSTRACT

The complex [PtCl2(cyclohexane-1R,2R-diamine)] has been combined in a Pt(IV) molecule with two different bioactive molecules (i.e., the histone deacetylase inhibitor 2-propylpentanoic acid or valproic acid, VPA, and the potential antimetastatic molecule 4-isopropenylcyclohexene-1-carboxylic acid or perillic acid, PA) in order to obtain a set of multiaction or multitarget antiproliferative agents. In addition to traditional thermal synthetic procedures, microwave-assisted heating was used to speed up their preparation. All Pt(IV) complexes showed antiproliferative activity on four human colon cancer cell lines (namely HCT116, HCT8, RKO and HT29) in the nanomolar range, considerably better than those of [PtCl2(cyclohexane-1R,2R-diamine)], VPA, PA, and the reference drug oxaliplatin. The synthesized complexes showed pro-apoptotic and pro-necrotic effects and the ability to induce cell cycle alterations. Moreover, the downregulation of histone deacetylase activity, leading to an increase in histone H3 and H4 levels, and the antimigratory activity, indicated by the reduction of the levels of matrix metalloproteinases MMP2 and MMP9, demonstrated the multiaction nature of the complexes, which showed biological properties similar to or better than those of VPA and PA, but at lower concentrations, probably due to the lipophilicity of the combo molecule that increases the intracellular concentration of the single components (i.e., [PtCl2(cyclohexane-1R,2R-diamine)], VPA and PA).


Subject(s)
Colonic Neoplasms , Platinum/chemistry , Platinum/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Diamines/chemistry , Diamines/pharmacology , Valproic Acid/chemistry , Valproic Acid/pharmacology , Colonic Neoplasms/drug therapy , Humans , Cell Line, Tumor , Histone Deacetylases/metabolism , Cell Movement/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
6.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373268

ABSTRACT

Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.


Subject(s)
Agaricales , Antineoplastic Agents , Breast Neoplasms , Pleurotus , Shiitake Mushrooms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Dietary Supplements , Diet , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
7.
Int J Mol Sci ; 24(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36834543

ABSTRACT

In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.


Subject(s)
Moths , Photochemotherapy , Porphyrins , Animals , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Porphyrins/chemistry , Models, Animal , Larva
8.
Insect Sci ; 30(4): 912-932, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36065570

ABSTRACT

In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.


Subject(s)
Diptera , Hemocytes , Animals , Larva/physiology , Diptera/physiology , Phagocytosis/physiology , Hemolymph
9.
Curr Issues Mol Biol ; 44(11): 5277-5293, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36354671

ABSTRACT

Experimental evidence implicates reactive oxygen species (ROS) generation in the hypoxic stabilization of hypoxia-inducible factor (HIF)-1α and in the subsequent expression of promoters of tumor invasiveness and metastatic spread. However, the role played by mitochondrial ROS in hypoxia-induced Epithelial-Mesenchymal Transition (EMT) activation is still unclear. This study was aimed at testing the hypothesis that the inhibition of hypoxia-induced mitochondrial ROS production, mainly at the mitochondrial Complex III UQCRB site, could result in the reversion of EMT, in addition to decreased HIF-1α stabilization. The role of hypoxia-induced ROS increase in HIF-1α stabilization and the ability of antioxidants, some of which directly targeting mitochondrial Complex III, to block ROS production and HIF-1α stabilization and prevent changes in EMT markers were assessed by evaluating ROS, HIF-1α and EMT markers on breast cancer cells, following 48 h treatment with the antioxidants. The specific role of UQCRB in hypoxia-induced EMT was also evaluated by silencing its expression through RNA interference and by assessing the effects of its downregulation on ROS production, HIF-1α levels, and EMT markers. Our results confirm the pivotal role of UQCRB in hypoxic signaling inducing EMT. Thus, UQCRB might be a new therapeutic target for the development of drugs able to reverse EMT by blocking mitochondrial ROS production.

10.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077597

ABSTRACT

Over the past 30 years, photodynamic therapy (PDT) has shown great development. In the clinical setting the few approved molecules belong almost exclusively to the porphyrin family; but in the scientific field, in recent years many researchers have been interested in other families of photosensitizers, among which BODIPY has shown particular interest. BODIPY is the acronym for 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene, and is a family of molecules well-known for their properties in the field of imaging. In order for these molecules to be used in PDT, a structural modification is necessary which involves the introduction of heavy atoms, such as bromine and iodine, in the beta positions of the pyrrole ring; this change favors the intersystem crossing, and increases the 1O2 yield. This mini review focused on a series of structural changes made to BODIPYs to further increase 1O2 production and bioavailability by improving cell targeting or photoactivity efficiency.


Subject(s)
Photochemotherapy , Boron Compounds/chemistry , Boron Compounds/therapeutic use , Fluorescent Dyes/chemistry
12.
Dalton Trans ; 51(15): 6014-6026, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35352739

ABSTRACT

Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.


Subject(s)
Antineoplastic Agents , Glioblastoma , Prodrugs , Anthraquinones/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cisplatin/chemistry , Glioblastoma/drug therapy , Humans , Ligands , Prodrugs/chemistry
13.
Cancers (Basel) ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36612089

ABSTRACT

Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.

14.
J Photochem Photobiol B ; 225: 112353, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34763227

ABSTRACT

Photodynamic therapy (PDT) is a clinically approved cancer treatment in which reactive oxygen species are formed only when three harmless components, a photosensitizer (PS), light and molecular oxygen, are present at the same time, leading to cell death. Most of the PSs were tested on monolayer cells, but differences between 2D cells and solid tumors significantly limit the value of in vitro PDT studies, whereas the use of 3D spheroid might be more suitable for drug development and preclinical drug testing for PDT. In a previous work we have shown that two positive-charged diaryl porphyrins (2 and 4) were more potent than the corresponding neutral molecules (1 and 3) on a panel of 2D-cultured cancer cell lines. In the present study the photodynamic effects of these molecules have been evaluated on HCT116 and MCF7 spheroids. Induction of apoptotic and necrotic cell death, and generation of reactive oxygen species (ROS) have been also evaluated, along with accumulation and localization of PSs into spheroids. Our findings indicate that 2 and 4 retained their phototoxic effects also in 3D spheroids; furthermore, they were more potent than 1 and 3 and as potent as Foscan (m-THPC), the most successful PS approved for clinical PDT of cancer, used as reference. Although further aspects of their mechanisms of action need to be addressed, our results strongly suggest a potential in vivo photodynamic application of 2 and 4, considering that spheroids represent a more realistic indicator of in vivo therapeutic efficacy than 2D cell lines.


Subject(s)
Neoplasms/pathology , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Spheroids, Cellular/metabolism , Cell Death/drug effects , HCT116 Cells , Humans , Reactive Oxygen Species/metabolism
15.
J Med Chem ; 64(15): 11597-11613, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34319100

ABSTRACT

The potential anticancer effect of fluoroquinolone antibiotics has been recently unveiled and related to their ability to interfere with DNA topoisomerase II. We herein envisioned the design and synthesis of novel Ciprofloxacin and Norfloxacin nitric oxide (NO) photo-donor hybrids to explore the potential synergistic antitumor effect exerted by the fluoroquinolone scaffold and NO eventually produced upon light irradiation. Anticancer activity, evaluated on a panel of tumor cell lines, showed encouraging results with IC50 values in the low micromolar range. Some compounds displayed intense antiproliferative activity on triple-negative and doxorubicin-resistant breast cancer cell lines, paving the way for their potential use to treat aggressive, refractory and multidrug-resistant breast cancer. No significant additive effect was observed on PC3 and DU145 cells following NO release. Conversely, antimicrobial photodynamic experiments on both Gram-negative and Gram-positive microorganisms displayed a significant killing rate in Staphylococcus aureus, accounting for their potential effectiveness as selective antimicrobial photosensitizers.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Ciprofloxacin/pharmacology , Nitric Oxide Donors/pharmacology , Norfloxacin/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Ciprofloxacin/chemical synthesis , Ciprofloxacin/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Nitric Oxide/metabolism , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Norfloxacin/chemical synthesis , Norfloxacin/chemistry , Photochemical Processes , Structure-Activity Relationship , Tumor Cells, Cultured
16.
J Chemother ; 33(2): 132-135, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32544039

ABSTRACT

This study assessed the relationship between the ability of Natural Killer (NK) cells to activate antibody-dependent cellular cytotoxicity against human HT29 colorectal cancer cells exposed to cetuximab and the body mass index of the human subjects from whom the NK cells had been obtained. NK cells obtained from 73 human donors were co-incubated with HT-29 human colon cancer cells in the presence or absence of cetuximab. Antibody-dependent cellular cytotoxicity was assessed by measuring LDH release. A significant negative correlation was observed between body mass index and cetuximab-induced antibody-dependent cellular cytotoxicity. NK cells obtained from subjects who were overweight or with obesity were less efficient in killing cetuximab-treated HT29 cells than those derived from normal weight donors. Our results suggest that the success of cetuximab-containing regimens might be impaired in overweight and obese patients with colorectal cancer.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/physiology , Antineoplastic Agents, Immunological/pharmacology , Body Mass Index , Cetuximab/pharmacology , Colonic Neoplasms/drug therapy , Overweight/physiopathology , Adult , Aged , Cell Line, Tumor , Female , Humans , Killer Cells, Natural/physiology , Male , Middle Aged , Obesity/physiopathology
17.
Bioorg Med Chem ; 28(21): 115737, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33065434

ABSTRACT

A new class of compounds based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene core, known as BODIPYs, has attracted significant attention as photosensitizers suitable for application in photodynamic therapy (PDT), which is a minimally invasive procedure to treat cancer. In PDT the combination of a photosensitizer (PS), light, and oxygen leads to a series of photochemical reactions generating reactive oxygen species (ROS) exerting cytotoxic action on tumor cells. Here we present the synthesis and the study of the in vitro photodynamic effects of two BODIPYs which differ in the structure of the substituent placed on the meso (or 8) position of the dipyrrolylmethenic nucleus. The two compounds were tested on three human cancer cell lines of different origin and degree of malignancy. Our results indicate that the BODIPYs are very effective in reducing the growth/viability of HCT116, SKOV3 and MCF7 cells when irradiated with a green LED source, whereas they are practically devoid of activity in the dark. Phototoxicity occurs mainly through apoptotic cell death, however necrotic cell death also seems to play a role. Furthermore, singlet oxygen generation and induction of the increase of reactive oxygen species also appear to be involved in the photodynamic effect of the BODIPYs. Finally, it is worth noting that the two BODIPYs are also able to exert anti-migratory activity.


Subject(s)
Boron Compounds/chemistry , Photosensitizing Agents/chemical synthesis , Apoptosis/drug effects , Boron Compounds/chemical synthesis , Boron Compounds/metabolism , Boron Compounds/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Drug Stability , Humans , Light , Neoplasms/drug therapy , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism
18.
Eur J Pharmacol ; 881: 173210, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32526242

ABSTRACT

Hypoxia-inducible factors (HIFs) are the force which drives hypoxic cancer cells to a more aggressive and resistant phenotype in a number of solid tumors, including colorectal and breast cancer. Results from recent studies suggest a role for HIF-1 in immune evasion and cancer stem cell phenotype promotion, establishing HIF-1 as a potential therapeutic target. Thus, identifying new compounds that might inhibit HIF1 activity, or at least exert antiproliferative effects that are unaffected by HIF1-dependent adaptations, is an attractive goal for the management of hypoxic tumors. Here we show that the flavonoid luteolin exerts a significant cytotoxic effect on the colon cancer cell line HCT116 and the breast adenocarcinoma cell line MDA-MB231, by inducing both apoptotic and necrotic cell death, and that this effect is not impaired by HIF-1 activation. In these cells, luteolin also stimulates autophagy; however this seems to be part of a protective response, rather than contribute to the cytotoxic effect. Interestingly, luteolin induces a decrease in HIF-1 transcriptional activity. This is accompanied by a decrease in the levels of protein markers of stemness and invasion, and by a reduction of migratory capacity of the cells. Taken together, our results suggest that luteolin could be developed into a useful therapeutic agent aimed at hypoxic tumors.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Luteolin/pharmacology , Apoptosis/drug effects , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/drug effects , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Necrosis , Signal Transduction , Transcription, Genetic , Tumor Escape/drug effects , Tumor Hypoxia , Tumor Microenvironment
19.
Insects ; 10(9)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443446

ABSTRACT

Xenorhabdus nematophila is a Gram-negative bacterium symbiont of the entomopathogen nematode Steinernema carpocapsae whose immunosuppressive properties over host's immune response have been thoroughly investigated. In particular, live X. nematophila actively impairs phagocytosis in host's hemocytes through the secretion of inhibitors of eicosanoids synthesis. In this article we have investigated the cell surface structural features of X. nematophila responsible for the elusion from phagocytosis. To this end we have studied the uptake of heat-killed (hk), fluorescein isothiocyanate (FITC)-labeled X. nematophila by phagocytes from both a host insect and a mammalian species. In vitro dead X. nematophila passively resists engulfment by insect hemocytes without impairing the phagocytosis machinery whereas, unexpectedly, in vivo a significant phagocytosis of dead X. nematophila was observed. X. nematophila in vivo phagocytosis was increased by the co-injection of the specific inhibitor of pro-phenoloxidase (PO) system phenylthiourea (PTU), even if these effects were not observed in in vitro tests. Furthermore, biochemical modifications of X. nematophila cell wall implement in vivo phagocytosis, suggesting that this bacterium avoid phagocytosis because the ligand of phagocytic receptors is somehow buried or disguised in the cell wall. Finally, dead X. nematophila escapes engulfment even by human phagocytes suggesting that X. nematophila could be a useful model to investigate escape from phagocytosis by mammalian macrophages.

20.
Bioorg Med Chem ; 27(17): 3805-3812, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31326241

ABSTRACT

The antiproliferative action of hispolon derivatives is stronger than that of related curcumin against several tumor cell lines. Hispolon size, smaller than curcumin, fits better than curcumin into the active site of HDAC6, an enzyme involved in deacetylation of lysine residues. HDACs are considered potential targets for tumor drug discovery and hydroxamates are known inhibitors of HDACs. One of them, SAHA (Vorinostat) is used in clinical studies. Investigations into possible mechanisms for hispolon derivatives active against the HCT116 colon tumor cell line are done after examining the structural results obtained from hispolon X-ray crystal structures as well as performing associated computational docking and Density Functional Theory techniques on HDAC6. These studies show preference for the HDAC6 active site by chelating the Zn center, in contrast with other ineffective hispolon derivatives, that establish only a single bond to the metal center. Structure activity relationships make clear that hydrogenation of the hispolon bridge also leads to single bond (non chelate) hispolon-Zn binding, and consistently nullifies the antiproliferative action against HCT116 tumor.


Subject(s)
Antineoplastic Agents/pharmacology , Catechols/pharmacology , Density Functional Theory , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Catechols/chemical synthesis , Catechols/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...