Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 8: e1023, 2022.
Article in English | MEDLINE | ID: mdl-36092012

ABSTRACT

Scientific software registries and repositories improve software findability and research transparency, provide information for software citations, and foster preservation of computational methods in a wide range of disciplines. Registries and repositories play a critical role by supporting research reproducibility and replicability, but developing them takes effort and few guidelines are available to help prospective creators of these resources. To address this need, the FORCE11 Software Citation Implementation Working Group convened a Task Force to distill the experiences of the managers of existing resources in setting expectations for all stakeholders. In this article, we describe the resultant best practices which include defining the scope, policies, and rules that govern individual registries and repositories, along with the background, examples, and collaborative work that went into their development. We believe that establishing specific policies such as those presented here will help other scientific software registries and repositories better serve their users and their disciplines.

2.
Transl Psychiatry ; 10(1): 100, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198361

ABSTRACT

This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.


Subject(s)
Depressive Disorder, Major , Brain/diagnostic imaging , Depressive Disorder, Major/genetics , Humans , Magnetic Resonance Imaging , Neuroimaging , Reproducibility of Results
3.
Pac Symp Biocomput ; 24: 208-219, 2019.
Article in English | MEDLINE | ID: mdl-30864323

ABSTRACT

Benchmark challenges, such as the Critical Assessment of Structure Prediction (CASP) and Dialogue for Reverse Engineering Assessments and Methods (DREAM) have been instrumental in driving the development of bioinformatics methods. Typically, challenges are posted, and then competitors perform a prediction based upon blinded test data. Challengers then submit their answers to a central server where they are scored. Recent efforts to automate these challenges have been enabled by systems in which challengers submit Docker containers, a unit of software that packages up code and all of its dependencies, to be run on the cloud. Despite their incredible value for providing an unbiased test-bed for the bioinformatics community, there remain opportunities to further enhance the potential impact of benchmark challenges. Specifically, current approaches only evaluate end-to-end performance; it is nearly impossible to directly compare methodologies or parameters. Furthermore, the scientific community cannot easily reuse challengers' approaches, due to lack of specifics, ambiguity in tools and parameters as well as problems in sharing and maintenance. Lastly, the intuition behind why particular steps are used is not captured, as the proposed workflows are not explicitly defined, making it cumbersome to understand the flow and utilization of data. Here we introduce an approach to overcome these limitations based upon the WINGS semantic workflow system. Specifically, WINGS enables researchers to submit complete semantic workflows as challenge submissions. By submitting entries as workflows, it then becomes possible to compare not just the results and performance of a challenger, but also the methodology employed. This is particularly important when dozens of challenge entries may use nearly identical tools, but with only subtle changes in parameters (and radical differences in results). WINGS uses a component driven workflow design and offers intelligent parameter and data selection by reasoning about data characteristics. This proves to be especially critical in bioinformatics workflows where using default or incorrect parameter values is prone to drastically altering results. Different challenge entries may be readily compared through the use of abstract workflows, which also facilitate reuse. WINGS is housed on a cloud based setup, which stores data, dependencies and workflows for easy sharing and utility. It also has the ability to scale workflow executions using distributed computing through the Pegasus workflow execution system. We demonstrate the application of this architecture to the DREAM proteogenomic challenge.


Subject(s)
Benchmarking/methods , Semantics , Workflow , Algorithms , Computational Biology/methods , Gene Expression Profiling/statistics & numerical data , Genomics , Metadata , Proteins/genetics , Proteins/metabolism , Reproducibility of Results , Sequence Analysis, RNA/statistics & numerical data
4.
CEUR Workshop Proc ; 1931: 63-70, 2017 Oct.
Article in English | MEDLINE | ID: mdl-30034319

ABSTRACT

Scientific collaborations involving multiple institutions are increasingly commonplace. It is not unusual for publications to have dozens or hundreds of authors, in some cases even a few thousands. Gathering the information for such papers may be very time consuming, since the author list must include authors who made different kinds of contributions and whose affiliations are hard to track. Similarly, when datasets are contributed by multiple institutions, the collection and processing details may also be hard to assemble due to the many individuals involved. We present our work to date on automatically generating author lists and other portions of scientific papers for multi-institutional collaborations based on the metadata created to represent the people, data, and activities involved. Our initial focus is ENIGMA, a large international collaboration for neuroimaging genetics.

5.
PLoS One ; 8(11): e80278, 2013.
Article in English | MEDLINE | ID: mdl-24312207

ABSTRACT

How easy is it to reproduce the results found in a typical computational biology paper? Either through experience or intuition the reader will already know that the answer is with difficulty or not at all. In this paper we attempt to quantify this difficulty by reproducing a previously published paper for different classes of users (ranging from users with little expertise to domain experts) and suggest ways in which the situation might be improved. Quantification is achieved by estimating the time required to reproduce each of the steps in the method described in the original paper and make them part of an explicit workflow that reproduces the original results. Reproducing the method took several months of effort, and required using new versions and new software that posed challenges to reconstructing and validating the results. The quantification leads to "reproducibility maps" that reveal that novice researchers would only be able to reproduce a few of the steps in the method, and that only expert researchers with advance knowledge of the domain would be able to reproduce the method in its entirety. The workflow itself is published as an online resource together with supporting software and data. The paper concludes with a brief discussion of the complexities of requiring reproducibility in terms of cost versus benefit, and a desiderata with our observations and guidelines for improving reproducibility. This has implications not only in reproducing the work of others from published papers, but reproducing work from one's own laboratory.


Subject(s)
Computational Biology/methods , Computational Biology/standards , Humans , Internet , Reproducibility of Results , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...