Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 226(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38381593

ABSTRACT

Identifying the genetic factors impacting the adaptation of crops to environmental conditions is of key interest for conservation and selection purposes. It can be achieved using population genomics, and evolutionary or quantitative genetics. Here we present a sorghum multireference back-cross nested association mapping population composed of 3,901 lines produced by crossing 24 diverse parents to 3 elite parents from West and Central Africa-back-cross nested association mapping. The population was phenotyped in environments characterized by differences in photoperiod, rainfall pattern, temperature levels, and soil fertility. To integrate the multiparental and multi-environmental dimension of our data we proposed a new approach for quantitative trait loci (QTL) detection and parental effect estimation. We extended our model to estimate QTL effect sensitivity to environmental covariates, which facilitated the integration of envirotyping data. Our models allowed spatial projections of the QTL effects in agro-ecologies of interest. We utilized this strategy to analyze the genetic architecture of flowering time and plant height, which represents key adaptation mechanisms in environments like West Africa. Our results allowed a better characterization of well-known genomic regions influencing flowering time concerning their response to photoperiod with Ma6 and Ma1 being photoperiod-sensitive and the region of possible candidate gene Elf3 being photoperiod-insensitive. We also accessed a better understanding of plant height genetic determinism with the combined effects of phenology-dependent (Ma6) and independent (qHT7.1 and Dw3) genomic regions. Therefore, we argue that the West and Central Africa-back-cross nested association mapping and the presented analytical approach constitute unique resources to better understand adaptation in sorghum with direct application to develop climate-smart varieties.


Subject(s)
Sorghum , Sorghum/genetics , Chromosome Mapping , Quantitative Trait Loci , Phenotype , Edible Grain/genetics
2.
BMC Genom Data ; 22(1): 4, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33568071

ABSTRACT

BACKGROUND: Multi-parent populations (MPPs) are important resources for studying plant genetic architecture and detecting quantitative trait loci (QTLs). In MPPs, the QTL effects can show various levels of allelic diversity, which can be an important factor influencing the detection of QTLs. In MPPs, the allelic effects can be more or less specific. They can depend on an ancestor, a parent or the combination of parents in a cross. In this paper, we evaluated the effect of QTL allelic diversity on the QTL detection power in MPPs. RESULTS: We simulated: a) cross-specific QTLs; b) parental and ancestral QTLs; and c) bi-allelic QTLs. Inspired by a real application in sugar beet, we tested different MPP designs (diallel, chessboard, factorial, and NAM) derived from five or nine parents to explore the ability to sample genetic diversity and detect QTLs. Using a fixed total population size, the QTL detection power was larger in MPPs with fewer but larger crosses derived from a reduced number of parents. The use of a larger set of parents was useful to detect rare alleles with a large phenotypic effect. The benefit of using a larger set of parents was however conditioned on an increase of the total population size. We also determined empirical confidence intervals for QTL location to compare the resolution of different designs. For QTLs representing 6% of the phenotypic variation, using 1600 F2 offspring individuals, we found average 95% confidence intervals over different designs of 49 and 25 cM for cross-specific and bi-allelic QTLs, respectively. CONCLUSIONS: MPPs derived from less parents with few but large crosses generally increased the QTL detection power. Using a larger set of parents to cover a wider genetic diversity can be useful to detect QTLs with a reduced minor allele frequency when the QTL effect is large and when the total population size is increased.


Subject(s)
Alleles , Beta vulgaris/genetics , Quantitative Trait Loci/genetics
3.
Front Plant Sci ; 11: 552509, 2020.
Article in English | MEDLINE | ID: mdl-33329623

ABSTRACT

The rapid development of phenotyping technologies over the last years gave the opportunity to study plant development over time. The treatment of the massive amount of data collected by high-throughput phenotyping (HTP) platforms is however an important challenge for the plant science community. An important issue is to accurately estimate, over time, the genotypic component of plant phenotype. In outdoor and field-based HTP platforms, phenotype measurements can be substantially affected by data-generation inaccuracies or failures, leading to erroneous or missing data. To solve that problem, we developed an analytical pipeline composed of three modules: detection of outliers, imputation of missing values, and mixed-model genotype adjusted means computation with spatial adjustment. The pipeline was tested on three different traits (3D leaf area, projected leaf area, and plant height), in two crops (chickpea, sorghum), measured during two seasons. Using real-data analyses and simulations, we showed that the sequential application of the three pipeline steps was particularly useful to estimate smooth genotype growth curves from raw data containing a large amount of noise, a situation that is potentially frequent in data generated on outdoor HTP platforms. The procedure we propose can handle up to 50% of missing values. It is also robust to data contamination rates between 20 and 30% of the data. The pipeline was further extended to model the genotype time series data. A change-point analysis allowed the determination of growth phases and the optimal timing where genotypic differences were the largest. The estimated genotypic values were used to cluster the genotypes during the optimal growth phase. Through a two-way analysis of variance (ANOVA), clusters were found to be consistently defined throughout the growth duration. Therefore, we could show, on a wide range of scenarios, that the pipeline facilitated efficient extraction of useful information from outdoor HTP platform data. High-quality plant growth time series data is also provided to support breeding decisions. The R code of the pipeline is available at https://github.com/ICRISAT-GEMS/SpaTemHTP.

4.
Theor Appl Genet ; 133(9): 2627-2638, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32518992

ABSTRACT

KEY MESSAGE: Multi-parent populations multi-environment QTL experiments data should be analysed jointly to estimate the QTL effect variation within the population and between environments. Commonly, QTL detection in multi-parent populations (MPPs) data measured in multiple environments (ME) is done by analyzing genotypic values 'averaged' across environments. This method ignores the environment-specific QTL (QTLxE) effects. Running separate single environment analyses is a possibility to measure QTLxE effects, but those analyses do not model the genetic covariance due to the use of the same genotype in different environments. In this paper, we propose methods to analyse MPP-ME QTL experiments using simultaneously the data from several environments and modelling the genotypic covariance. Using data from the EU-NAM Flint population, we show that these methods estimate the QTLxE effects and that they can improve the quality of the QTL detection. Those methods also have a larger inference power. For example, they can be extended to integrate environmental indices like temperature or precipitation to better understand the mechanisms behind the QTLxE effects. Therefore, our methodology allows the exploitation of the full MPP-ME data potential: to estimate QTL effect variation (a) within the MPP between sub-populations due to different genetic backgrounds and (b) between environments.


Subject(s)
Crosses, Genetic , Environment , Models, Genetic , Quantitative Trait Loci , Zea mays/genetics , Gene-Environment Interaction , Genotype
5.
Theor Appl Genet ; 130(8): 1753-1764, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28547012

ABSTRACT

KEY MESSAGE: In the QTL analysis of multi-parent populations, the inclusion of QTLs with various types of effects can lead to a better description of the phenotypic variation and increased power. For the type of QTL effect in QTL models for multi-parent populations (MPPs), various options exist to define them with respect to their origin. They can be modelled as referring to close parental lines or to further away ancestral founder lines. QTL models for MPPs can also be characterized by the homo- or heterogeneity of variance for polygenic effects. The most suitable model for the origin of the QTL effect and the homo- or heterogeneity of polygenic effects may be a function of the genetic distance distribution between the parents of MPPs. We investigated the statistical properties of various QTL detection models for MPPs taking into account the genetic distances between the parents of the MPP. We evaluated models with different assumptions about the QTL effect and the form of the residual term using cross validation. For the EU-NAM data, we showed that it can be useful to mix in the same model QTLs with different types of effects (parental, ancestral, or bi-allelic). The benefit of using cross-specific residual terms to handle the heterogeneity of variance was less obvious for this particular data set.


Subject(s)
Models, Genetic , Quantitative Trait Loci , Zea mays/genetics , Alleles , Crosses, Genetic , Genotype , Models, Statistical , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...