Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nature ; 488(7411): 349-52, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22895340

ABSTRACT

In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

2.
Nature ; 413(6857): 708-11, 2001 Oct 18.
Article in English | MEDLINE | ID: mdl-11607024

ABSTRACT

Herbig-Haro (HH) objects have been known for 50 years to be luminous condensations of gas in star-forming regions, but their underlying physical nature is still being elucidated. Previously suggested models encompass newborn stars, stellar winds clashing with nebular material, dense pockets of interstellar gas excited by shocks from outflows, and interstellar 'bullets' (ref. 6). Recent progress has been made with the jet-induced shock model, in which material streams out of young stellar objects and collides with the surrounding interstellar medium. A clear prediction of this model is that the most energetic Herbig-Haro objects will emit X-rays, although they have not hitherto been detected. Here we report the discovery of X-ray emission from one of the brightest and closest Herbig-Haro objects, HH2, at a level consistent with the model predictions. We conclude that this Herbig-Haro object contains shock-heated material located at or near its leading edge with a temperature of about 106 K.

3.
Nature ; 413(6851): 45-8, 2001 Sep 06.
Article in English | MEDLINE | ID: mdl-11544519

ABSTRACT

The nuclei of most galaxies are now believed to harbour supermassive black holes. The motions of stars in the central few light years of our Milky Way Galaxy indicate the presence of a dark object with a mass of about 2.6 x 106 solar masses (refs 2, 3). This object is spatially coincident with the compact radio source Sagittarius A* (Sgr A*) at the dynamical centre of the Galaxy, and the radio emission is thought to be powered by the gravitational potential energy released by matter as it accretes onto a supermassive black hole. Sgr A* is, however, much fainter than expected at all wavelengths, especially in X-rays, which has cast some doubt on this model. The first strong evidence for X-ray emission was found only recently. Here we report the discovery of rapid X-ray flaring from the direction of Sgr A*, which, together with the previously reported steady X-ray emission, provides compelling evidence that the emission is coming from the accretion of gas onto a supermassive black hole at the Galactic Centre.

4.
Science ; 290(5495): 1325-8, 2000 Nov 17.
Article in English | MEDLINE | ID: mdl-11082054

ABSTRACT

High-resolution x-ray observations of the prototype starburst galaxy Messier 82 (M82) obtained with the advanced CCD (charge-coupled device) imaging spectrometer on board the Chandra X-ray Observatory provide a detailed view of hot plasma and energetic processes. Plasma with temperature of about 40,000,000 kelvin fills the inner 1 kiloparsec, which is much hotter than the 1,000,000 to 2,000,000 kelvin interstellar medium component in the Milky Way Galaxy. Produced by many supernova explosions, this central region is overpressurized and drives M82's prominent galactic wind into the intergalactic medium. We also resolved about 20 compact x-ray sources, many of which could be high-mass x-ray binary star systems containing black holes.

5.
Science ; 290(5493): 955-8, 2000 Nov 03.
Article in English | MEDLINE | ID: mdl-11062121

ABSTRACT

We report on the discovery of two emission features observed in the x-ray spectrum of the afterglow of the gamma-ray burst (GRB) of 16 December 1999 by the Chandra X-ray Observatory. These features are identified with the Ly(alpha) line and the narrow recombination continuum by hydrogenic ions of iron at a redshift z = 1.00 +/- 0.02, providing an unambiguous measurement of the distance of a GRB. Line width and intensity imply that the progenitor of the GRB was a massive star system that ejected, before the GRB event, a quantity of iron approximately 0.01 of the mass of the sun at a velocity approximately 0.1 of the speed of light, probably by a supernova explosion.

6.
Appl Opt ; 27(8): 1430-2, 1988 Apr 15.
Article in English | MEDLINE | ID: mdl-20531592

ABSTRACT

X-ray astronomy has reached sufficient maturity to demand at least moderate angular resolution lightgathering telescopes to accompany detector development. Keeping the cost of such telescopes within the budget of low-cost flight opportunities such as sounding rockets and SPARTAN missions is a substantial challenge. We have developed a program of precision diamond mirror turning, mechanical polishing, lacquer coating, and metal deposition which produces x-ray telescopes with minute of arc angular resolution at moderate cost. We describe the process and report calibration results for a 80 cm (31.4 in.) diam Wolter I telescope flown aboard an Aries sounding rocket.

SELECTION OF CITATIONS
SEARCH DETAIL