Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(16): 3325-3337.e5, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37478864

ABSTRACT

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments, such as freshwater, must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify the basic principles governing contractile vacuole function, we investigate here the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineages: the discoban Naegleria gruberi and the amoebozoan slime mold Dictyostelium discoideum. Using quantitative cell biology, we find that although these species respond differently to osmotic challenges, they both use vacuolar-type proton pumps for filling contractile vacuoles and actin for osmoregulation, but not to power water expulsion. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum. These analyses show that cytoplasmic pressure is sufficient to drive contractile vacuole emptying for a wide range of cellular pressures and vacuolar geometries. Because vacuolar-type proton-pump-dependent contractile vacuole filling and pressure-dependent emptying have now been validated in three eukaryotic lineages that diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.


Subject(s)
Dictyostelium , Cytosol/metabolism , Osmolar Concentration , Water-Electrolyte Balance , Vacuoles/metabolism , Eukaryota , Water/metabolism
2.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909496

ABSTRACT

Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban Naegleria gruberi , and the amoebozoan slime mold Dictyostelium discoideum . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.

3.
Biophys J ; 122(5): 767-783, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36739478

ABSTRACT

The cytoplasm is a complex, crowded, actively driven environment whose biophysical characteristics modulate critical cellular processes such as cytoskeletal dynamics, phase separation, and stem cell fate. Little is known about the variance in these cytoplasmic properties. Here, we employed particle-tracking nanorheology on genetically encoded multimeric 40 nm nanoparticles (GEMs) to measure diffusion within the cytoplasm of individual fission yeast (Schizosaccharomyces pombe) cellscells. We found that the apparent diffusion coefficients of individual GEM particles varied over a 400-fold range, while the differences in average particle diffusivity among individual cells spanned a 10-fold range. To determine the origin of this heterogeneity, we developed a Doppelgänger simulation approach that uses stochastic simulations of GEM diffusion that replicate the experimental statistics on a particle-by-particle basis, such that each experimental track and cell had a one-to-one correspondence with their simulated counterpart. These simulations showed that the large intra- and inter-cellular variations in diffusivity could not be explained by experimental variability but could only be reproduced with stochastic models that assume a wide intra- and inter-cellular variation in cytoplasmic viscosity. The simulation combining intra- and inter-cellular variation in viscosity also predicted weak nonergodicity in GEM diffusion, consistent with the experimental data. To probe the origin of this variation, we found that the variance in GEM diffusivity was largely independent of factors such as temperature, the actin and microtubule cytoskeletons, cell-cyle stage, and spatial locations, but was magnified by hyperosmotic shocks. Taken together, our results provide a striking demonstration that the cytoplasm is not "well-mixed" but represents a highly heterogeneous environment in which subcellular components at the 40 nm size scale experience dramatically different effective viscosities within an individual cell, as well as in different cells in a genetically identical population. These findings carry significant implications for the origins and regulation of biological noise at cellular and subcellular levels.


Subject(s)
Cytoskeleton , Cytoplasm , Diffusion , Cytosol , Computer Simulation
4.
Annu Rev Cell Dev Biol ; 38: 349-374, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35562853

ABSTRACT

Since the proposal of the differential adhesion hypothesis, scientists have been fascinated by how cell adhesion mediates cellular self-organization to form spatial patterns during development. The search for molecular tool kits with homophilic binding specificity resulted in a diverse repertoire of adhesion molecules. Recent understanding of the dominant role of cortical tension over adhesion binding redirects the focus of differential adhesion studies to the signaling function of adhesion proteins to regulate actomyosin contractility. The broader framework of differential interfacial tension encompasses both adhesion and nonadhesion molecules, sharing the common function of modulating interfacial tension during cell sorting to generate diverse tissue patterns. Robust adhesion-based patterning requires close coordination between morphogen signaling, cell fate decisions, and changes in adhesion. Current advances in bridging theoretical and experimental approaches present exciting opportunities to understand molecular, cellular, and tissue dynamics during adhesion-based tissue patterning across multiple time and length scales.


Subject(s)
Actin Cytoskeleton , Actomyosin , Cell Adhesion
5.
Elife ; 112022 03 11.
Article in English | MEDLINE | ID: mdl-35275060

ABSTRACT

Animal cell migration is predominantly driven by the coordinated, yet stochastic, polymerization of thousands of nanometer-scale actin filaments across micron-scale cell leading edges. It remains unclear how such inherently noisy processes generate robust cellular behavior. We employed high-speed imaging of migrating neutrophil-like HL-60 cells to explore the fine-scale shape fluctuations that emerge and relax throughout the process of leading edge maintenance. We then developed a minimal stochastic model of the leading edge that reproduces this stable relaxation behavior. Remarkably, we find lamellipodial stability naturally emerges from the interplay between branched actin network growth and leading edge shape - with no additional feedback required - based on a synergy between membrane-proximal branching and lateral spreading of filaments. These results thus demonstrate a novel biological noise-suppression mechanism based entirely on system geometry. Furthermore, our model suggests that the Arp2/3-mediated ~70-80° branching angle optimally smooths lamellipodial shape, addressing its long-mysterious conservation from protists to mammals.


In every human cell, there are tens of millions of proteins which work together to control everything from the cell's shape to its behavior. One of the most abundant proteins is actin, which organizes itself into filaments that mechanically support the cell and help it to move. These filaments are very dynamic, with individual actin molecules constantly being added or removed. This allows the cell to build large structures with distinct shapes and properties. Many motile cells, for example, have a structure called a lamellipodium which protrudes at their 'leading edge' and pushes them forward. The lamellipodium has a very robust shape that does not vary much between different cell types, or change significantly as cells migrate. But how the tens of thousands of actin molecules inside the lamellipodium organize themselves into this large, stable structure is not fully understood. To investigate, Garner and Theriot used high-speed video microscopy to track the shape of human cells cultured in the laboratory. As the cells crawled along a glass surface, their leading edge undulated like strings being plucked on a guitar. A computer simulation showed that these ripples can be caused by filaments randomly adding and removing actin molecules. While these random movements could destabilize the structure of the leading edge, the simulation suggests that another aspect of actin filament growth smooths out any fluctuations in the lamellipodium's shape. Actin networks in the lamellipodium have a branched configuration, with new strands emerging off each other at an angle like branches in a tree. Garner and Theriot found that the specific angle in which new filaments are added smooths out the lamellipodium's shape, which may explain why this geometry has persisted throughout evolution. These findings suggest that the way in which actin filaments join together helps to maintain the shape of large cellular structures. In the future, scientists could use this design principle to build molecular machines that can self-organize into microstructures. These engineered constructs could be used to modulate the activity of living cells that have been damaged by disease.


Subject(s)
Actins , Pseudopodia , Actin Cytoskeleton , Animals , Cell Movement , Cytoskeleton , Mammals
6.
Cytoskeleton (Hoboken) ; 77(5-6): 181-196, 2020 05.
Article in English | MEDLINE | ID: mdl-32072765

ABSTRACT

Observations of actin dynamics in living cells using fluorescence microscopy have been foundational in the exploration of the mechanisms underlying cell migration. We used CRISPR/Cas9 gene editing to generate neutrophil-like HL-60 cell lines expressing GFP-ß-actin from the endogenous locus (ACTB). In light of many previous reports outlining functional deficiencies of labeled actin, we anticipated that HL-60 cells would only tolerate a monoallelic edit, as biallelic edited cells would produce no normal ß-actin. Surprisingly, we recovered viable monoallelic GFP-ß-actin cells as well as biallelic edited GFP-ß-actin cells, in which one copy of the ACTB gene is silenced and the other contains the GFP tag. Furthermore, the edited cells migrate with similar speeds and persistence as unmodified cells in a variety of motility assays, and have nearly normal cell shapes. These results might partially be explained by our observation that GFP-ß-actin incorporates into the F-actin network in biallelic edited cells at similar efficiencies as normal ß-actin in unedited cells. Additionally, the edited cells significantly upregulate γ-actin, perhaps helping to compensate for the loss of normal ß-actin. Interestingly, biallelic edited cells have only modest changes in global gene expression relative to the monoallelic line, as measured by RNA sequencing. While monoallelic edited cells downregulate expression of the tagged allele and are thus only weakly fluorescent, biallelic edited cells are quite bright and well-suited for live cell microscopy. The nondisruptive phenotype and direct interpretability of this fluorescent tagging approach make it a promising tool for studying actin dynamics in these rapidly migrating and highly phagocytic cells.


Subject(s)
Actins/metabolism , Green Fluorescent Proteins/metabolism , HL-60 Cells/metabolism , Neutrophils/metabolism , Cell Movement , Humans
7.
mSphere ; 3(5)2018 09 19.
Article in English | MEDLINE | ID: mdl-30232166

ABSTRACT

Hydrolase are enzymes that regulate diverse biological processes, including posttranslational protein modifications. Recent work identified four active serine hydrolases (ASHs) in Toxoplasma gondii as candidate depalmitoylases. However, only TgPPT1 (ASH1) has been confirmed to remove palmitate from proteins. ASH4 (TgME49_264290) was reported to be refractory to genetic disruption. We demonstrate that recombinant ASH4 is an esterase that processes short acyl esters but not palmitoyl thioesters. Genetic disruption of ASH4 causes defects in cell division and premature scission of parasites from residual bodies. These defects lead to the presence of vacuoles with a disordered intravacuolar architecture, with parasites arranged in pairs around multiple residual bodies. Importantly, we found that the deletion of ASH4 correlates with a defect in radial dispersion from host cells after egress. This defect in dispersion of parasites is a general phenomenon that is observed for disordered vacuoles that occur at low frequency in wild-type parasites, suggesting a possible general link between intravacuolar organization and dispersion after egress.IMPORTANCE This work defines the function of an enzyme in the obligate intracellular parasite Toxoplasma gondii We show that this previously uncharacterized enzyme is critical for aspects of cellular division by the parasite and that loss of this enzyme leads to parasites with cell division defects and which also are disorganized inside their vacuoles. This leads to defects in the ability of the parasite to disseminate from the site of an infection and may have a significant impact on the parasite's overall infectivity of a host organism.


Subject(s)
Hydrolases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Toxoplasma/growth & development , Vacuoles/parasitology , Cell Division , Cell Line , Host-Parasite Interactions , Humans , Hydrolases/genetics , Protein Processing, Post-Translational , Protozoan Proteins/genetics , Serine/genetics , Structural Homology, Protein , Toxoplasma/genetics , Toxoplasmosis
SELECTION OF CITATIONS
SEARCH DETAIL
...