Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Cell Death Discov ; 10(1): 183, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643192

ABSTRACT

Signalling through TNFR1 modulates proinflammatory gene transcription and programmed cell death, and its impairment causes autoimmune diseases and cancer. NEDD4-binding protein 1 (N4BP1) is a critical suppressor of proinflammatory cytokine production that acts as a regulator of innate immune signalling and inflammation. However, our current understanding about the molecular properties that enable N4BP1 to exert its suppressive potential remain limited. Here, we show that N4BP1 is a novel linear ubiquitin reader that negatively regulates NFκB signalling by its unique dimerization-dependent ubiquitin-binding module that we named LUBIN. Dimeric N4BP1 strategically positions two non-selective ubiquitin-binding domains to ensure preferential recognition of linear ubiquitin. Under proinflammatory conditions, N4BP1 is recruited to the nascent TNFR1 signalling complex, where it regulates duration of proinflammatory signalling in LUBIN-dependent manner. N4BP1 deficiency accelerates TNFα-induced cell death by increasing complex II assembly. Under proapoptotic conditions, caspase-8 mediates proteolytic processing of N4BP1, resulting in rapid degradation of N4BP1 by the 26 S proteasome, and acceleration of apoptosis. In summary, our findings demonstrate that N4BP1 dimerization creates a novel type of ubiquitin reader that selectively recognises linear ubiquitin which enables the timely and coordinated regulation of TNFR1-mediated inflammation and cell death.

2.
Methods Mol Biol ; 2778: 331-344, 2024.
Article in English | MEDLINE | ID: mdl-38478287

ABSTRACT

The type 9 secretion system (T9SS) is a recently discovered machinery that both transports cargo proteins across the Gram-negative bacterial outer membrane and attaches them to lipopolysaccharides on the extracellular surface. Outer membrane proteins (OMPs) are key components of the T9SS and are involved in both steps. In this chapter, we describe a method for the in silico modeling of T9SS OMPs and their complexes, and model validation. This is useful when the production of recombinant OMPs is difficult, and these protocols can also be applied to OMP complexes outside of the T9SS.


Subject(s)
Bacterial Outer Membrane Proteins , Membrane Proteins , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism
3.
Front Cell Infect Microbiol ; 13: 1335389, 2023.
Article in English | MEDLINE | ID: mdl-38156318

ABSTRACT

Biofilm formation is an important survival strategy commonly used by bacteria and fungi, which are embedded in a protective extracellular matrix of organic polymers. They are ubiquitous in nature, including humans and other animals, and they can be surface- and non-surface-associated, making them capable of growing in and on many different parts of the body. Biofilms are also complex, forming polymicrobial communities that are difficult to eradicate due to their unique growth dynamics, and clinical infections associated with biofilms are a huge burden in the healthcare setting, as they are often difficult to diagnose and to treat. Our understanding of biofilm formation and development is a fast-paced and important research focus. This review aims to describe the advancements in clinical biofilm research, including both in vitro and in vivo biofilm models, imaging techniques and techniques to analyse the biological functions of the biofilm.


Subject(s)
Bacteria , Biofilms , Humans , Animals , Fungi , Extracellular Matrix
4.
bioRxiv ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38106198

ABSTRACT

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans (GAGs) on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual dynamic trimer arrangement with a positively charged external surface and a negatively charged solvent exposed internal cavity. Through Molecular Dynamics (MD) simulations, we show how the GAG chondroitin-4-sulphate associates with the Lcl-CTD surface via unique binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate binding mechanism.

5.
Colloids Surf B Biointerfaces ; 227: 113327, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172419

ABSTRACT

Mucus reduces friction between epithelial surfaces by providing lubrication in the boundary and mixed regime. Mucins, the main macromolecule, are heavily glycosylated proteins that polymerise and retain water molecules, resulting in a hydrated biogel. It is assumed that positively charged ions can influence mucin film structure by screening the electrostatic repulsions between the negatively charged glycans on mucin moieties and draw in water molecules via hydration shells. The ionic concentration can vary significantly in different mucus systems and here we show that increasing the ionic concentration in mucin films leads to an increase in lubrication between two polydimethylsiloxane surfaces at sliding contact in a compliant oral mimic. Mucins were found to bind sodium ions in a concentration-dependent manner and increased ionic concentration appears to cause mucin films to swell when assessed by Quartz Crystal hiMicrobalance with Dissipation (QCM-D) analysis. Furthermore, we determined that the removal of negatively charged sialic acid moieties by sialidase digestion resulted in reduced adsorption to hydrophilic surfaces but did not affect the swelling of mucin films with increasing ionic concentrations. Moreover, the coefficient of friction was increased with sialic acid removal, but lubrication was still increased with increasing ionic concentrations. Taken together this suggests that sialic acids are important for lubrication and may exert this through the sacrificial layer mechanism. Ionic concentration appears to influence mucin films and their lubrication, and sialic acids, at least partly, may be important for ion binding.


Subject(s)
Mucins , Sialic Acids , Mucins/chemistry , Lubrication , N-Acetylneuraminic Acid , Water/chemistry
7.
Structure ; 31(2): 123-125, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736296

ABSTRACT

In this issue of Structure, Dazzoni et al. solve the high-resolution homo- and hetero-dimeric structures of the Klebsiella oxytoca PulL and PulM C-terminal domains and unravel an uncharacterized dynamic interaction interface that is required for correct function of the type II secretion system.


Subject(s)
Klebsiella oxytoca , Type II Secretion Systems , Klebsiella oxytoca/chemistry , Type II Secretion Systems/chemistry
8.
J Mol Biol ; 434(23): 167871, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36404438

ABSTRACT

Porphyromonas gingivalis is a gram-negative oral anaerobic pathogen and is one of the key causative agents of periodontitis. P. gingivalis utilises a range of virulence factors, including the cysteine protease RgpB, to drive pathogenesis and these are exported and attached to the cell surface via the type IX secretion system (T9SS). All cargo proteins possess a conserved C-terminal signal domain (CTD) which is recognised by the T9SS, and the outer membrane ß-barrel protein PorV (PG0027/LptO) can interact with cargo proteins as they are exported to the bacterial surface. Using a combination of solution nuclear magnetic resonance (NMR) spectroscopy, biochemical analyses, machine-learning-based modelling and molecular dynamics (MD) simulations, we present a structural model of a PorV:RgpB-CTD complex from P. gingivalis. This is the first structural insight into CTD recognition by the T9SS and shows how the conserved motifs in the CTD are the primary sites that mediate binding. In PorV, interactions with extracellular surface loops are important for binding the CTD, and together these appear to cradle and lock RgpB-CTD in place. This work provides insight into cargo recognition by PorV but may also have important implications for understanding other aspects of type-IX dependent secretion.


Subject(s)
Bacterial Proteins , Bacterial Secretion Systems , Membrane Proteins , Molecular Dynamics Simulation , Porphyromonas gingivalis , Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Porphyromonas gingivalis/metabolism , Porphyromonas gingivalis/pathogenicity , Virulence Factors/chemistry , Bacterial Secretion Systems/chemistry , Protein Domains
9.
NPJ Biofilms Microbiomes ; 8(1): 9, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217675

ABSTRACT

Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Biofilms , Escherichia coli/physiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Intestines
11.
Caries Res ; 55(4): 310-321, 2021.
Article in English | MEDLINE | ID: mdl-34247164

ABSTRACT

Extrinsic black tooth stain (BS) is a common oral disease associated with lower caries experience in preschool children, although the microbiotic features contributing to the low risk of caries in this group remain elusive. In this study, we aimed at identifying the dominant bacteria in dental plaque to indicate the incidence of caries in the primary dentition. Subjects were divided into 3 groups based on the clinical examination: group CF, children without pigment who had no caries lesions or restorations (n = 18); group CS, children who were diagnosed with severe early childhood caries (n = 17); and group BS, children with pigment (black extrinsic stain) without caries or restorations (n = 15). The total microbial genomic DNA was extracted and subjected to bacterial 16S ribosomal RNA gene sequencing using an Illumina HiSeq platform. The differential dominant bacteria were determined using Wilcoxon rank-sum testing and linear discriminant analysis effect size (LEfSe). Co-occurrence network analysis was performed using sparse correlations for compositional data, calculation and functional features were predicted using PICRUSt. Interestingly, our results showed that the relative abundance of Pseudopropionibacterium, Actinomyces, Rothia, and Cardiobacterium was from high to low and that of Porphyromonas was low to high in the BS, CF, and CS groups, consistent with the clinical incidence of caries in the 3 groups. Moreover, an increased level of Selenomonas_3, Fusobacterium, and Leptotrichia was associated with high caries prevalence. We found that the interactions among genera in the BS and CS plaque communities are less complex than those in the CF communities at the taxon level. Functional features, including cofactor and vitamin metabolism, glycan biosynthesis and metabolism, and translation, significantly increased in caries plaque samples. These bacterial competition- and commensalism-induced changes in microbiota would result in a change of their symbiotic function, finally affecting the balance of oral microflora.


Subject(s)
Dental Caries , Dental Plaque , Microbiota , Child, Preschool , Dental Caries/epidemiology , Dental Caries Susceptibility , Humans , RNA, Ribosomal, 16S/genetics , Tooth, Deciduous
12.
J Clin Med ; 10(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946184

ABSTRACT

Mucins are a family of glycosylated proteins which are the primary constituents of mucus and play a dynamic role in the regulation of the protective mucosal barriers throughout the human body. Ulcerative colitis (UC) is an Inflammatory Bowel Disease (IBD) characterised by continuous inflammation of the inner layer of the large intestine, and in this systematic review we analyse currently available data to determine whether alterations exist in mucin activity in the colonic mucosa of UC patients. Database searches were conducted to identify studies published between 1990 and 2020 that assess the role of mucins in cohorts of UC patients, where biopsy specimens were resected for analysis and control groups were included for comparison. 5497 articles were initially identified and of these 14 studies were systematically selected for analysis, a further 2 articles were identified through citation chaining. Therefore, 16 studies were critically reviewed. 13 of these studies assessed the role of MUC2 in UC and the majority of articles indicated that alterations in MUC2 structure or synthesis had an impact on the colonic mucosa, although conflicting results were presented regarding MUC2 expression. This review highlights the importance of further research to enhance our understanding of mucin regulation in UC and summarises data that may inform future studies.

13.
Bio Protoc ; 11(5): e3933, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33796607

ABSTRACT

Legionella pneumophila, a Gram-negative bacterium and the causative agent of Legionnaires' disease, exports over 300 effector proteins/virulence factors, through its type II (T2SS) and type IV secretion systems (T4SS). One such T2SS virulence factor, ChiA, not only functions as a chitinase, but also as a novel mucinase, which we believe aids ChiA-dependent virulence during lung infection. Previously published protocols manipulated wild-type L. pneumophila strain 130b and its chiA mutant to express plasmid-encoded GFP. Similarly, earlier studies demonstrated that wheat germ agglutinin (WGA) can be fluorescently labeled and can bind to mucins. In the current protocol, GFP-labeled bacteria were incubated with type II and type III porcine stomach mucins, which were then labeled with TexasRed-tagged WGA and analyzed by flow-cytometry to measure the binding of bacteria to mucins in the presence or absence of endogenous ChiA. In addition, we analysed binding of purified ChiA to type II and type III porcine stomach mucins. This protocol couples both bacterial and direct protein binding to mucins and is the first to measure Gram-negative bacterial binding to mucins using WGA and flow-cytometric analysis. Graphic abstract: Strategy for assessing bacterial and protein binding to mucins.

14.
Front Mol Biosci ; 8: 830304, 2021.
Article in English | MEDLINE | ID: mdl-35096976

ABSTRACT

Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.

15.
mBio ; 11(5)2020 10 27.
Article in English | MEDLINE | ID: mdl-33109763

ABSTRACT

Neisseria gonorrhoeae relies on type IV pili (T4p) to promote colonization of their human host and to cause the sexually transmitted infection gonorrhea. This organelle cycles through a process of extension and retraction back into the bacterial cell. Through a genetic screen, we identified the NGO0783 locus of N. gonorrhoeae strain FA1090 as containing a gene encoding a protein required to stabilize the type IV pilus in its extended, nonretracted conformation. We have named the gene tfpC and the protein TfpC. Deletion of tfpC produces a nonpiliated colony morphology, and immuno-transmission electron microscopy confirms that the pili are lost in the ΔtfpC mutant, although there is some pilin detected near the bacterial cell surface. A copy of the tfpC gene expressed from a lac promoter restores pilus expression and related phenotypes. A ΔtfpC mutant shows reduced levels of pilin protein, but complementation with a tfpC gene restored pilin to normal levels. Bioinformatic searches show that there are orthologues in numerous bacterial species, but not all type IV pilin-expressing bacteria contain orthologous genes. Coevolution and nuclear magnetic resonance (NMR) analysis indicates that TfpC contains an N-terminal transmembrane helix, a substantial extended/unstructured region, and a highly charged C-terminal coiled-coil domain.IMPORTANCE Most bacterial species express one or more extracellular organelles called pili/fimbriae that are required for many properties of each bacterial cell. The Neisseria gonorrhoeae type IV pilus is a major virulence and colonization factor for the sexually transmitted infection gonorrhea. We have discovered a new protein of Neisseria gonorrhoeae called TfpC that is required to maintain type IV pili on the bacterial cell surface. There are similar proteins found in other members of the Neisseria genus and many other bacterial species important for human health.


Subject(s)
Bacterial Proteins/genetics , Fimbriae, Bacterial/physiology , Neisseria gonorrhoeae/genetics , Amino Acid Sequence , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , Fimbriae, Bacterial/classification , Gene Expression Regulation, Bacterial , Neisseria gonorrhoeae/metabolism , Phenotype , Protein Domains , Virulence
16.
Front Mol Biosci ; 7: 112, 2020.
Article in English | MEDLINE | ID: mdl-32656228

ABSTRACT

Legionella pneumophila is a Gram-negative bacterium that is able to replicate within a broad range of aquatic protozoan hosts. L. pneumophila is also an opportunistic human pathogen that can infect macrophages and epithelia in the lung and lead to Legionnaires' disease. The type II secretion system is a key virulence factor of L. pneumophila and is used to promote bacterial growth at low temperatures, regulate biofilm formation, modulate host responses to infection, facilitate bacterial penetration of mucin gels and is necessary for intracellular growth during the initial stages of infection. The L. pneumophila type II secretion system exports at least 25 substrates out of the bacterium and several of these, including NttA to NttG, contain unique amino acid sequences that are generally not observed outside of the Legionella genus. NttA, NttC, and NttD are required for infection of several amoebal species but it is unclear what influence other novel substrates have within their host. In this study, we show that NttE is required for optimal infection of Acanthamoeba castellanii and Vermamoeba vermiformis amoeba and is essential for the typical colony morphology of L. pneumophila. In addition, we report the atomic structures of NttA, NttC, and NttE and through a combined biophysical and biochemical hypothesis driven approach we propose novel functions for these substrates during infection. This work lays the foundation for future studies into the mechanistic understanding of novel type II substrate functions and how these relate to L. pneumophila ecology and disease.

17.
PLoS Pathog ; 16(5): e1008342, 2020 05.
Article in English | MEDLINE | ID: mdl-32365117

ABSTRACT

Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an often-fatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.


Subject(s)
Chitinases/metabolism , Legionella pneumophila/metabolism , Acetylglucosamine/metabolism , Bacterial Proteins/metabolism , Chitin/metabolism , Chitinases/physiology , Gene Expression Regulation, Bacterial/genetics , Legionnaires' Disease/metabolism , Metals , Mucin-1/metabolism , Mucins/metabolism , Proteolysis , Structure-Activity Relationship , Virulence Factors/metabolism
18.
NPJ Biofilms Microbiomes ; 6(1): 15, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221298

ABSTRACT

Functional amyloids are considered as common building block structures of the biofilm matrix in different bacteria. In previous work, we have shown that the staphylococcal surface protein Bap, a member of the Biofilm-Associated Proteins (BAP) family, is processed and the fragments containing the N-terminal region become aggregation-prone and self-assemble into amyloid-like structures. Here, we report that Esp, a Bap-orthologous protein produced by Enterococcus faecalis, displays a similar amyloidogenic behavior. We demonstrate that at acidic pH the N-terminal region of Esp forms aggregates with an amyloid-like conformation, as evidenced by biophysical analysis and the binding of protein aggregates to amyloid-indicative dyes. Expression of a chimeric protein, with its Esp N-terminal domain anchored to the cell wall through the R domain of clumping factor A, showed that the Esp N-terminal region is sufficient to confer multicellular behavior through the formation of an extracellular amyloid-like material. These results suggest that the mechanism of amyloid-like aggregation to build the biofilm matrix might be widespread among BAP-like proteins. This amyloid-based mechanism may not only have strong relevance for bacteria lifestyle but could also contribute to the amyloid burden to which the human physiology is potentially exposed.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biofilms/growth & development , Enterococcus faecalis/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Amyloid/metabolism , Bacterial Adhesion , Bacterial Proteins/genetics , Enterococcus faecalis/metabolism , Hydrogen-Ion Concentration , Membrane Proteins/genetics , Protein Aggregates , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
19.
Sci Rep ; 10(1): 1860, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024871

ABSTRACT

The occurrence of anti-drug antibodies following administration of therapeutic monoclonal antibody to patients is a growing problem that is attracting attention from frontline clinicians. Ideally, an initial indicative point of care test would provide guidance to seek testing approved by the regulatory authorities. Here we describe a platform for the detection of IgG anti-drug antibodies that may provide an initial screen for all therapeutic monoclonal antibodies. Synthetic genes encoding Nanoluciferase polypeptides were inserted between the variable heavy and light domain encoding region of known antibody drugs (alemtuzumab and adalimumab) to generate recombinant single chain GloBodies, which retain the drug antibody paratopes and Nanoluciferase activity. In the presence of anti-drug antibodies, the GloBody is bound by specific IgG in the sample. These complexes are captured on immobilised Protein G and the luciferase activity determined. The amount of light generated being indicative of the anti-drug IgG antibody levels in serum. It should be possible to assemble GloBody reagents for all therapeutic monoclonal antibodies and adapt the capture phase to include additional specific isotypes. The assay has the potential to be developed for use with a drop of blood allowing initial pre-screening in a point of care setting.


Subject(s)
Antibodies, Monoclonal/immunology , Biotechnology/methods , Immunoassay/methods , Pharmaceutical Preparations/metabolism , Binding Sites, Antibody/immunology , Humans , Immunoglobulin G/immunology , Luciferases/immunology , Point-of-Care Systems
20.
Structure ; 27(5): 776-784.e4, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30879889

ABSTRACT

Engineering proteins to assemble into user-defined structures is key in their development for biotechnological applications. However, designing generic rather than bespoke solutions is challenging. Here we describe an expandable recombinant assembly system that produces scalable protein cages via split intein-mediated native chemical ligation. Three types of component are used: two complementary oligomeric "half-cage" protein fusions and an extendable monomeric "linker" fusion. All are composed of modular protein domains chosen to fulfill the required geometries, with two orthogonal pairs of split intein halves to drive assembly when mixed. This combination enables both one-pot construction of two-component cages and stepwise assembly of larger three-component scalable cages. To illustrate the system's versatility, trimeric half-cages and linker constructs comprising consensus-designed repeat proteins were ligated in one-pot and stepwise reactions. Under mild conditions, rapid high-yielding ligations were obtained, from which discrete proteins cages were easily purified and shown to form the desired trigonal bipyramidal structures.


Subject(s)
Inteins , Protein Engineering/methods , Proteins/chemistry , Algorithms , Circular Dichroism , DNA/chemistry , Protein Domains , Recombinant Fusion Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...