Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(12): 122502, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027859

ABSTRACT

The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu ß decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2_{3}^{+}→0_{2}^{+} and 2_{3}^{+}→4_{1}^{+} transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize ^{74}Zn in its ground state. Furthermore, an excited K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40 "island of inversion" appears to manifest above Z=26, previously thought as its northern limit in the chart of the nuclides.

2.
Phys Rev Lett ; 127(11): 112701, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558922

ABSTRACT

We have performed the first direct measurement of the ^{83}Rb(p,γ) radiative capture reaction cross section in inverse kinematics using a radioactive beam of ^{83}Rb at incident energies of 2.4 and 2.7A MeV. The measured cross section at an effective relative kinetic energy of E_{cm}=2.393 MeV, which lies within the relevant energy window for core collapse supernovae, is smaller than the prediction of statistical model calculations. This leads to the abundance of ^{84}Sr produced in the astrophysical p process being higher than previously calculated. Moreover, the discrepancy of the present data with theoretical predictions indicates that further experimental investigation of p-process reactions involving unstable projectiles is clearly warranted.

3.
Phys Rev Lett ; 125(17): 172501, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156683

ABSTRACT

The ^{80}Ge structure was investigated in a high-statistics ß-decay experiment of ^{80}Ga using the GRIFFIN spectrometer at TRIUMF-ISAC through γ, ß-e, e-γ, and γ-γ spectroscopy. No evidence was found for the recently reported 0_{2}^{+} 639-keV level suggested as evidence for low-energy shape coexistence in ^{80}Ge. Large-scale shell model calculations performed in ^{78,80,82}Ge place the 0_{2}^{+} level in ^{80}Ge at 2 MeV. The new experimental evidence combined with shell model predictions indicate that low-energy shape coexistence is not present in ^{80}Ge.

5.
Phys Rev Lett ; 123(14): 142502, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702191

ABSTRACT

From detailed spectroscopy of ^{110}Cd and ^{112}Cd following the ß^{+}/electron-capture decay of ^{110,112}In and the ß^{-} decay of ^{112}Ag, very weak decay branches from nonyrast states are observed. The transition rates determined from the measured branching ratios and level lifetimes obtained with the Doppler-shift attenuation method following inelastic neutron scattering reveal collective enhancements that are suggestive of a series of rotational bands. In ^{110}Cd, a γ band built on the shape-coexisting intruder configuration is suggested. For ^{112}Cd, the 2^{+} and 3^{+} intruder γ-band members are suggested, the 0_{3}^{+} band is extended to spin 4^{+}, and the 0_{4}^{+} band is identified. The results are interpreted using beyond-mean-field calculations employing the symmetry conserving configuration mixing method with the Gogny D1S energy density functional and with the suggestion that the Cd isotopes exhibit multiple shape coexistence.

6.
Phys Rev Lett ; 123(8): 082501, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31491233

ABSTRACT

The elusive ß^{-}p^{+} decay was observed in ^{11}Be by directly measuring the emitted protons and their energy distribution for the first time with the prototype Active Target Time Projection Chamber in an experiment performed at ISAC-TRIUMF. The measured ß^{-}p^{+} branching ratio is orders of magnitude larger than any previous theoretical model predicted. This can be explained by the presence of a narrow resonance in ^{11}B above the proton separation energy.

7.
Phys Rev Lett ; 118(15): 152502, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28452556

ABSTRACT

Angular distributions of the elastic, inelastic, and breakup cross sections of the halo nucleus ^{11}Be on ^{197}Au were measured at energies below (E_{lab}=31.9 MeV) and around (39.6 MeV) the Coulomb barrier. These three channels were unambiguously separated for the first time for reactions of ^{11}Be on a high-Z target at low energies. The experiment was performed at TRIUMF (Vancouver, Canada). The differential cross sections were compared with three different calculations: semiclassical, inert-core continuum-coupled-channels and continuum-coupled-channels ones with including core deformation. These results show conclusively that the elastic and inelastic differential cross sections can only be accounted for if core-excited admixtures are taken into account. The cross sections for these channels strongly depend on the B(E1) distribution in ^{11}Be, and the reaction mechanism is sensitive to the entanglement of core and halo degrees of freedom in ^{11}Be.

8.
Phys Rev Lett ; 116(17): 172501, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27176517

ABSTRACT

Precision measurements of superallowed Fermi ß-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and ß counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074 s and T_{1/2}=19.3009±0.0017 s, respectively. The latter is the most precise superallowed ß-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed ß-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

9.
Phys Rev Lett ; 113(2): 022702, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062171

ABSTRACT

This Letter reports on a systematic study of ß-decay half-lives of neutron-rich nuclei around doubly magic (208)Pb. The lifetimes of the 126-neutron shell isotone (204)Pt and the neighboring (200-202)Ir, (203)Pt, (204)Au are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden ß strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first-forbidden transitions reproduce more satisfactorily the trend in the measured half-lives for the nuclei in this region, where the r-process pathway passes through during ß decay back to stability.

10.
Phys Rev Lett ; 110(2): 022504, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383898

ABSTRACT

Based on results from a measurement of weak decay branches observed following the ß- decay of 94Y and on lifetime data from a study of 94Zr by inelastic neutron scattering, collective structure is deduced in the closed-subshell nucleus 94Zr. These results establish shape coexistence in 94Zr. The role of subshells for nuclear collectivity is suggested to be important.

11.
Phys Rev Lett ; 109(4): 042301, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-23006079

ABSTRACT

We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...