Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(47): e2304624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707242

ABSTRACT

Understanding the emergent electronic structure in twisted atomically thin layers has led to the exciting field of twistronics. However, practical applications of such systems are challenging since the specific angular correlations between the layers must be precisely controlled and the layers have to be single crystalline with uniform atomic ordering. Here, an alternative, simple, and scalable approach is suggested, where nanocrystallinetwo-dimensional (2D) film on 3D substrates yields twisted-interface-dependent properties. Ultrawide-bandgap hexagonal boron nitride (h-BN) thin films are directly grown on high in-plane lattice mismatched wide-bandgap silicon carbide (4H-SiC) substrates to explore the twist-dependent structure-property correlations. Concurrently, nanocrystalline h-BN thin film shows strong non-linear second-harmonic generation and ultra-low cross-plane thermal conductivity at room temperature, which are attributed to the twisted domain edges between van der Waals stacked nanocrystals with random in-plane orientations. First-principles calculations based on time-dependent density functional theory manifest strong even-order optical nonlinearity in twisted h-BN layers. This work unveils that directly deposited 2D nanocrystalline thin film on 3D substrates could provide easily accessible twist-interfaces, therefore enabling a simple and scalable approach to utilize the 2D-twistronics integrated in 3D material devices for next-generation nanotechnology.

2.
ACS Appl Mater Interfaces ; 15(33): 39980-39988, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37555428

ABSTRACT

Diamond surface functionalization has received significant research interest recently. Specifically, H-termination has been widely adopted because it endows the diamond surface with negative electron affinity and the hole carrier is injected in the presence of surface transfer dopants. Exploring different functional groups' attachment on diamond surfaces and their impact on the electronic structure, using wet and dry chemical approaches, would hence be of interest in engineering diamond as a semiconductor. Here, we report the functionalization of the H-terminated diamond surface with nitrogen and sulfur heteroatoms. Surface characterization of functionalized diamond surfaces shows that these groups are well-distributed and covalently bonded to diamonds. Four chemical functional groups (-SH, -S-S-, -S-O, and -S=O) were found on the sulfurized diamond surface, and two groups (-NH2 and =NH) upon amination. We also report co-functionalization of surface with N and S (N-S), where sulfurization promotes sequential amination efficiency with reduced exposure time. Electrical measurement shows that heteroatom-modified diamond surfaces possess higher conductivity than H-terminated diamonds. Density functional theory (DFT) shows that upon functionalization with various N/S ratios, the conduction band minimum and valence band maximum downshift, which lowers the bandgap in comparison to an H-terminated diamond. These observations suggest the possibility of heteroatom functionalizations with enhanced surface electrical conductivity on the diamond that are useful for various electronic applications.

3.
Nano Lett ; 23(15): 6927-6936, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37489836

ABSTRACT

Boron nitride (BN) is an exceptional material, and among its polymorphs, two-dimensional (2D) hexagonal and three-dimensional (3D) cubic BN (h-BN and c-BN) phases are most common. The phase stability regimes of these BN phases are still under debate, and phase transformations of h-BN/c-BN remain a topic of interest. Here, we investigate the phase stability of 2D/3D h-BN/c-BN nanocomposites and show that the coexistence of two phases can lead to strong nonlinear optical properties and low thermal conductivity at room temperature. Furthermore, spark-plasma sintering of the nanocomposite shows complete phase transformation to 2D h-BN with improved crystalline quality, where 3D c-BN possibly governs the nucleation and growth kinetics. Our demonstration might be insightful in phase engineering of BN polymorph-based nanocomposites with desirable properties for optoelectronics and thermal energy management applications.

4.
ACS Appl Mater Interfaces ; 13(37): 44663-44672, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34494814

ABSTRACT

Sub-micron-size light sources are currently extremely dim, achieving nanowatt output powers due to the current density and temperature droop. Recently, we reported a droop-free fin light-emitting diode (LED) pixel that at high current densities becomes a laser with record output power in the microwatt range. Here, we show a scalable method for selectively metallizing fins via their nonpolar side facet that allows electrical injection to sub-200 nm wide n-ZnO fins on p-GaN with at least 0.8 µm2 active area. Electrically addressable fin LEDs are fabricated in a linear array format using standard 2 µm resolution photolithography. Electroluminescence analysis across different pixels shows that the fin acts as the active region of the LED and generates a narrow-band ultraviolet emission between ≈368 and ≈390 nm. Investigating fins at high current densities, ranging from 100 to 2000 kA/cm2, shows that their emission increases without any decline even as the junction temperature reaches a range of 200-340 °C. The absence of electron leakage to p-GaN at high injection levels and an undetectable electron-hole escape from the fin at high temperatures indicate that the fin shape is highly efficient in controlling the nonradiative recombination pathways such as Auger recombination. The fin LED geometry is expected to enable the realization of high-brightness arrays of light sources at sub-micron-size regimes suitable for operation at high temperatures and high current densities.

5.
3D Print Addit Manuf ; 7(6): 279-287, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-36654673

ABSTRACT

This work details a polyolefin-elastomer-based binder system to prepare fused filament fabrication (FFF) filaments and print cores for coils for electrical engines. The processability, homogeneity, and thermal properties of the polyolefin-elastomer-based filaments are explored. A two-step debinding and sintering process was established for manufacturing dense iron parts. Results indicate the developed filaments possess superior printing and sintering (at 900°C) performance, yielding only 20% weight loss by polymer decomposition and 14 vol.% shrinkage. This indicates that the FFF technique potentially enables printing of innovative electric motor designs. The designed FFF filaments could be loaded with 80 wt.% Fe powder while keeping a decent melt-viscosity for the printing process. Due to the high metal loading, dense iron parts could be sintered without bending or deformation.

6.
ACS Appl Mater Interfaces ; 11(18): 16991-17000, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30932470

ABSTRACT

The combination of conductivity, optical transparency, and wide anodic potential window has driven significant interest in indium tin oxide (ITO) as an electrode material for electrochemical measurements. More recently, ITO has been applied to the detection of trace metals using cathodic stripping voltammetry (CSV), specifically manganese (Mn). However, the optimization of ITO fabrication for a voltammetric method such as CSV is yet to be reported, nor have the microstructural properties of ITO been investigated for CSV. Furthermore, CSV does not require optical transparency, thereby allowing nontransparent substrates to be used for deposition. This enables microfabrication procedures to be expanded and simplified compared to glass or quartz. Combining this with the profound importance of sensitive, selective detection of toxic metal ions in environmentally and biologically relevant samples makes ITO especially attractive. In this work, we report a thorough investigation of ITO deposition and processing on silicon (Si) substrates for CSV analysis using Mn as the model analyte. Several ITO process parameters were examined such as heated deposition and post-process annealing. Each ITO film was characterized using a variety of surface, bulk (X-ray diffraction), and electrochemical measurements. Although each ITO film type showed electrochemical activity, the heated and annealed (HA) ITO fabrication process yielded superior results for Mn CSV; a limit of detection (LOD) of 0.1 ppb (1.8 nM) was obtained. This work exemplifies new applications of ITO as an electrode material while providing a baseline for trace detection of toxic metals and other contaminants amenable to detection by CSV.

7.
Chem Mater ; 29(15): 6279-6288, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-29545674

ABSTRACT

High volume manufacturing of devices based on transition metal dichalcogenide (TMD) ultra-thin films will require deposition techniques that are capable of reproducible wafer-scale growth with monolayer control. To date, TMD growth efforts have largely relied upon sublimation and transport of solid precursors with minimal control over vapor phase flux and gas-phase chemistry, which are critical for scaling up laboratory processes to manufacturing settings. To address these issues, we report a new pulsed metalorganic chemical vapor deposition (MOCVD) route for MoS2 film growth in a research-grade single-wafer reactor. Using bis(tert-butylimido)-bis(dimethylamido)molybdenum and diethyl disulfide we deposit MoS2 films from ≈ 1 nm to ≈ 25 nm in thickness on SiO2/Si substrates. We show that layered 2H-MoS2 can be produced at comparatively low reaction temperatures of 591 °C at short deposition times, approximately 90 s for few-layer films. In addition to the growth studies performed on SiO2/Si, films with wafer-level uniformity are demonstrated on 50 mm quartz wafers. Process chemistry and impurity incorporation from precursors are also discussed. This low-temperature and fast process highlights the opportunities presented by metalorganic reagents in the controlled synthesis of TMDs.

8.
Adv Mater Interfaces ; 3(5)2016 Mar 07.
Article in English | MEDLINE | ID: mdl-27088067

ABSTRACT

Understanding and developing metrics on how nanocrystals respond to local external surface stimuli at their interfaces during growth or operation is a key step in advancing scalable and deterministic approaches for fabricating functional one- and two-dimensional (1D and 2D) nanoscale networks. Here, we present early results on a general approach for surface-directed nanocrystal epitaxy on a surface with an irregular lattice constant. We show that patches of lattice matched areas as small as 7 nm in a background of surface lattice disorder could satisfy the condition for epitaxial growth of a crawling nanocrystal over the disordered region. Threshold of failure in nanocrystal epitaxy is found to depend on the spacing between the patches and their total surface area. Results indicate nanoepitaxy on a disordered surface occurs if it contains patches of lattice matched regions with at least 20% of surface coverage, illustrating the remarkable tolerance of this type of growth to surface lattice disorder. By adjusting this threshold, it is possible to scalably restrict nanocrystal growth, filter out single nanowires and partition nanowire heterojunctions into segments with different orientations or modulate their electronic structures. This approach is expected to impact epitaxy of highly-mismatched semiconductors and lead to realization of ultrathin heterojunctions of 1D-2D materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...