Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693878

ABSTRACT

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Subject(s)
Acetylcysteine , Anti-Bacterial Agents , Biofilms , Escherichia coli , Nitric Oxide , Staphylococcus aureus , Acetylcysteine/chemistry , Acetylcysteine/pharmacology , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Polyvinyl Chloride/chemistry , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology
2.
ACS Appl Bio Mater ; 7(5): 2993-3004, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38593411

ABSTRACT

Bacterial biofilms play a central role in the development and progression of periodontitis, a chronic inflammatory condition that affects the oral cavity. One solution to current treatment constraints is using nitric oxide (NO)─with inherent antimicrobial properties. In this study, an antimicrobial coating is developed from the NO donor S-nitroso-N-acetylpenicillamine (SNAP) embedded within polyethylene glycol (PEG) to prevent periodontitis. The SNAP-PEG coating design enabled a controlled NO release, achieving tunable NO levels for more than 24 h. Testing the SNAP-PEG composite on dental floss showed its effectiveness as a uniform and bioactive coating. The coating exhibited antibacterial properties against Streptococcus mutans and Escherichia coli, with inhibition zones measuring up to 7.50 ± 0.28 and 14.80 ± 0.46 mm2, respectively. Furthermore, SNAP-PEG coating materials were found to be stable when stored at room temperature, with 93.65% of SNAP remaining after 28 d. The coatings were biocompatible against HGF and hFOB 1.19 cells through a 24 h controlled release study. This study presents a facile method to utilize controlled NO release with dental antimicrobial coatings comprising SNAP-PEG. This coating can be easily applied to various substrates, providing a user-friendly approach for targeted self-care in managing gingival infections associated with periodontitis.


Subject(s)
Anti-Bacterial Agents , Coated Materials, Biocompatible , Escherichia coli , Materials Testing , Nitric Oxide , Streptococcus mutans , Streptococcus mutans/drug effects , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Escherichia coli/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Microbial Sensitivity Tests , Particle Size , Biofilms/drug effects , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , Surface Properties , Periodontitis/drug therapy , Periodontitis/microbiology , Gingiva/cytology
3.
ACS Appl Bio Mater ; 7(5): 3086-3095, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38652779

ABSTRACT

Of the 27 million surgeries performed in the United States each year, a reported 2.6% result in a surgical site infection (SSI), and Staphylococci species are commonly the culprit. Alternative therapies, such as nitric oxide (NO)-releasing biomaterials, are being developed to address this issue. NO is a potent antimicrobial agent with several modes of action, including oxidative and nitrosative damage, disruption of bacterial membranes, and dispersion of biofilms. For targeted antibacterial effects, NO is delivered by exogenous donor molecules, like S-nitroso-N-acetylpenicillamine (SNAP). Herein, the impregnation of SNAP into poly(lactic-co-glycolic acid) (PLGA) for SSI prevention is reported for the first time. The NO-releasing PLGA copolymer is fabricated and characterized by donor molecule loading, leaching, and the amount remaining after ethylene oxide sterilization. The swelling ratio, water uptake, static water contact angle, and tensile strength are also investigated. Furthermore, its cytocompatibility is tested against 3T3 mouse fibroblast cells, and its antimicrobial efficacy is assessed against multiple Staphylococci strains. Overall, the NO-releasing PLGA copolymer holds promise as a suture material for eradicating surgical site infections caused by Staphylococci strains. SNAP impregnation affords robust antibacterial properties while maintaining the cytocompatibility and mechanical integrity.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Materials Testing , Nitric Oxide , Polylactic Acid-Polyglycolic Acid Copolymer , Surgical Wound Infection , Sutures , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Surgical Wound Infection/microbiology , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Particle Size , Staphylococcus aureus/drug effects , Staphylococcus/drug effects
4.
J Colloid Interface Sci ; 664: 928-937, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38503078

ABSTRACT

Bacteria-associated infections and thrombus formation are the two major complications plaguing the application of blood-contacting medical devices. Therefore, functionalized surfaces and drug delivery for passive and active antifouling strategies have been employed. Herein, we report the novel integration of bio-inspired superhydrophobicity with nitric oxide release to obtain a functional polymeric material with anti-thrombogenic and antimicrobial characteristics. The nitric oxide release acts as an antimicrobial agent and platelet inhibitor, while the superhydrophobic components prevent non-specific biofouling. Widely used medical-grade silicone rubber (SR) substrates that are known to be susceptible to biofilm and thrombus formation were dip-coated with fluorinated silicon dioxide (SiO2) and silver (Ag) nanoparticles (NPs) using an adhesive polymer as a binder. Thereafter, the resulting superhydrophobic (SH) SR substrates were impregnated with S-nitroso-N-acetylpenicillamine (SNAP, an NO donor) to obtain a superhydrophobic, Ag-bound, NO-releasing (SH-SiAgNO) surface. The SH-SiAgNO surfaces had the lowest amount of viable adhered E. coli (> 99.9 % reduction), S. aureus (> 99.8 % reduction), and platelets (> 96.1 % reduction) as compared to controls while demonstrating no cytotoxic effects on fibroblast cells. Thus, this innovative approach is the first to combine SNAP with an antifouling SH polymer surface that possesses the immense potential to minimize medical device-associated complications without using conventional systemic anticoagulation and antibiotic treatments.


Subject(s)
Anti-Infective Agents , Thrombosis , Humans , Nitric Oxide/chemistry , Silver/pharmacology , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , Staphylococcus aureus , Escherichia coli , Silicon Dioxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Hydrophobic and Hydrophilic Interactions , Thrombosis/prevention & control , Polymers/chemistry
5.
J Biomed Mater Res B Appl Biomater ; 112(2): e35377, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38359174

ABSTRACT

Silicone rubber (SR), a common medical-grade polymer used in medical devices, has previously been modified for nitric oxide (NO) releasing capabilities. However, the effects of material properties such as film thickness on NO release kinetics are not well explored. In this study, SR is used in the first analysis of how a polymer's thickness affects the storage and uptake of an NO donor and subsequent release properties. Observed NO release trends show that a polymer's thickness results in tunable NO release. These results indicate how crucial a polymer's thickness is to optimize the NO release in an efficient and effective method.


Subject(s)
Nitric Oxide , Silicone Elastomers , Nitric Oxide Donors
6.
ACS Appl Mater Interfaces ; 15(37): 43332-43344, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671841

ABSTRACT

Cystinuria is an inherited autosomal recessive disease of the kidneys of recurring nature that contributes to frequent urinary tract infections due to bacterial growth and biofilm formation surrounding the stone microenvironment. In the past, commonly used strategies for managing cystinuria involved the use of (a) cystine crystal growth inhibitors such as l-cystine dimethyl ester and lipoic acid, and (b) thiol-based small molecules such as N-(2-mercaptopropionyl) glycine, commonly known as tiopronin, that reduce the formation of cystine crystals by reacting with excess cystine and generating more soluble disulfide compounds. However, there is a dearth of simplistic chemical approaches that have focused on the dual treatment of cystinuria and the associated microbial infections. This work strategically exploited a single chemical approach to develop a nitric oxide (NO)-releasing therapeutic compound, S-nitroso-2-mercaptopropionyl glycine (tiopronin-NO), for the dual management of cystine stone formation and the related bacterial infections. The results successfully demonstrated that (a) the antibacterial activity of NO rendered tiopronin-NO effective against the stone microenvironment inhabitants, Escherichia coli and Pseudomonas aeruginosa, and (b) tiopronin-NO retained the ability to undergo disulfide exchange with cystine while being reported to be safe against canine kidney and mouse fibroblast cells. Thus, the synthesis of such a facile molecule aimed at the dual management of cystinuria and related infections is unprecedented in the literature.


Subject(s)
Bacterial Infections , Cystinuria , Mice , Animals , Dogs , Cystinuria/drug therapy , Tiopronin/pharmacology , Tiopronin/therapeutic use , Cystine/pharmacology , Disulfides , Escherichia coli , Nitric Oxide
7.
Biomater Sci ; 11(19): 6561-6572, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37594048

ABSTRACT

Antibiotic lock therapy (ALT) is standard clinical practice for treating bacteremia linked with catheter-related bloodstream infections (CRBSIs). However, this strategy frequently fails against multi-drug-resistant bacteria in clinical settings. In this study, a novel approach to utilize a nitric oxide (NO) donor S-nitroso-N-acetyl-penicillamine (SNAP)-conjugated to ampicillin antibiotic (namely SNAPicillin) as a catheter lock solution is presented. The conjugate of two antimicrobial agents is anticipated to overcome the challenges of bacterial infection caused by antibiotic-resistant bacteria in ALT applications. Nitric oxide release from the SNAPicillin lock solution at varying concentrations was measured at 0 and 24 h time points in a catheter model system, which revealed tunable NO release at physiological levels. The clinical strains of E. coli (CDC AR-0089) and S. marcescens (CDC AR-0099) were screened using a zone of inhibition assay against standard antibiotics which confirmed the antibiotic resistance in bacteria. The minimum inhibitory concentration (MIC) testing of SNAPicillin unveiled the lowest MIC value for SNAPicillin against both E. coli and S. marcescens (1 and 2 mM of SNAPicillin, respectively) with an 8.24- and 4.28-log reduction in bacterial load compared to controls, respectively. In addition, while the ampicillin-treated biofilm demonstrated resistance toward the antibiotic, SNAPicillin led to >99% reduction in exterminating biofilm buildup on polymeric catheter surfaces. Lastly, the SNAPicillin lock solution was determined to be biocompatible via hemolysis and cell compatibility studies. Together, these results emphasize the promising potential of SNAPicillin lock solution with the dual-action of NO and ampicillin in overcoming bacterial challenges on medical devices like central venous catheters and other medical device interfaces.


Subject(s)
Anti-Infective Agents , Catheter-Related Infections , Humans , Anti-Bacterial Agents , Nitric Oxide , Escherichia coli , Catheter-Related Infections/drug therapy , Catheter-Related Infections/prevention & control , Catheter-Related Infections/microbiology , Ampicillin/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria , Catheters , Nitric Oxide Donors
8.
ACS Appl Mater Interfaces ; 15(12): 15185-15194, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926823

ABSTRACT

Biofilm formation on biomaterial interfaces and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatment of infections. In this project, ampicillin, a commonly used antibiotic, was conjugated with S-nitroso-N-acetylpenicillamine (SNAP), an S-nitrosothiol compound (RSNO) used for controlled nitric oxide (NO) release. This novel multifunctional molecule is the first of its kind to provide combined antibiotic and NO treatment of infectious pathogens. Characterization of the molecule included NMR, FTIR, and mass spectrometry. NO release behavior was also measured and compared to pure, unmodified SNAP. When evaluating the antimicrobial efficacy, the synthesized SNAPicillin molecule showed the lowest MIC value against Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-resistant Staphylococcus aureus compared to ampicillin and SNAP alone. SNAPicillin also displayed enhanced biofilm dispersal and killing of both bacterial strains when treating a 48 h biofilm preformed on a polymer surface. The antibacterial results combined with the biocompatibility of the molecule show great promise for infection prevention and treatment of polymeric interfaces to reduce medical device-related infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Nitric Oxide , Nitric Oxide/chemistry , S-Nitroso-N-Acetylpenicillamine/pharmacology , S-Nitroso-N-Acetylpenicillamine/chemistry , Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Bacteria , Biofilms
9.
J Colloid Interface Sci ; 640: 144-161, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36842420

ABSTRACT

Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Porphyrins , Animals , Nitric Oxide , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Light , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Mammals
10.
J Biomed Mater Res A ; 111(4): 451-464, 2023 04.
Article in English | MEDLINE | ID: mdl-36594584

ABSTRACT

Graphene oxide (GO) nanosheets are a promising class of carbon-based materials suitable for application in the construction of medical devices. These materials have inherent antimicrobial properties based on sheet size, but these effects must be carefully traded off to maintain biocompatibility. Chemical modification of functional groups to the lattice structure of GO nanosheets enables unique opportunities to introduce new surface properties to bolster biological effects. Herein, we have developed nitric oxide (NO)-releasing GO nanosheets via immobilization of S-nitrosothiol (RSNO) moieties to GO nanosheets (GO-[NH]x -SNO). These novel RSNO-based GO nanosheets were characterized for chemical functionality via Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and colorimetric assays for functional group quantification. Stoichiometric control of the available RSNO groups functionalized onto the nanosheets was studied using chemiluminescence-based NO detection methods, showing highly tunable NO release kinetics. Studies of electrical stimulation and subsequent electrochemical reduction of the nanosheets demonstrated further tunability of the NO release based on stimuli. Finally, nanosheets were evaluated for cytotoxicity and antibacterial effects, showing strong cytocompatibility with human fibroblasts in parallel to broad antibacterial and anti-biofilm effects against both Gram-positive and Gram-negative strains. In summary, derivatized GO-(NH)x -SNO nanosheets were shown to have tunable NO release properties, enabling application-specific tailoring for diverse biomedical applications such as antimicrobial coatings and composite fillers for stents, sensors, and other medical devices.


Subject(s)
Biocompatible Materials , Graphite , Humans , Nitric Oxide , Graphite/chemistry , Anti-Bacterial Agents/chemistry
11.
ACS Appl Mater Interfaces ; 15(5): 7610-7626, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700859

ABSTRACT

Hybrid organic-inorganic materials are attracting enormous interest in materials science due to the combination of multiple advantageous properties of both organic and inorganic components. Taking advantage of a simple, scalable, solvent-free hard-sacrificial method, we report the successful fabrication of three-dimensional hybrid porous foams by integrating two types of fillers into a poly(dimethylsiloxane) (PDMS) framework. These fillers consist of hydrophobic electrically conductive graphene (GR) nanoplatelets and hydrophobic bactericidal copper (Cu) microparticles. The fillers were utilized to create the hierarchical rough structure with low-surface-energy properties on the PDMS foam surfaces, leading to remarkable superhydrophobicity/superoleophilicity with contact angles of 158 and 0° for water and oil, respectively. The three-dimensional interconnected porous foam structures facilitated high oil adsorption capacity and excellent reusability as well as highly efficient oil/organic solvent-water separation in turbulent, corrosive, and saline environments. Moreover, the introduction of the fillers led to a significant improvement in the electrical conductivity and biofouling resistance (vs whole blood, fibrinogen, platelet cells, and Escherichia coli) of the foams. We envision that the developed composite strategy will pave a facile, scalable, and effective way for fabricating novel multifunctional hybrid materials with ideal properties that may find potential use in a broad range of biomedical, energy, and environmental applications.

12.
ACS Appl Mater Interfaces ; 14(19): 21916-21930, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35507415

ABSTRACT

Demineralization and breakdown of tooth enamel are characterized by a condition called dental caries or tooth decay, which is caused by two main factors: (1) highly acidic food intake without proper oral hygiene and (2) overactive oral bacteria generating acidic metabolic byproducts. Fluoride treatments have been shown to help rebuild the hydroxyapatite structures that make up 98% of enamel but do not tackle the bacterial overload that continues to threaten future demineralization. Herein, we have created a dual-function Pluronic F127-alginate hydrogel with nitric oxide (NO)- and fluoride-releasing capabilities for the two-pronged treatment of dental caries. Analysis of the hydrogels demonstrated porous, shear-thinning behaviors with tunable mechanical properties. Varying the weight percent of the NO donor S-nitrosoglutathione (GSNO) within the hydrogel enabled physiologically actionable NO release over 4 h, with the fabricated gels demonstrating storage stability over 21 days. This NO-releasing capability resulted in a 97.59% reduction of viable Streptococcus mutans in the planktonic state over 4 h and reduced the preformed biofilm mass by 48.8% after 24 h. Delivery of fluoride ions was confirmed by a fluoride-sensitive electrode, with release levels resulting in the significant prevention of demineralization of hydroxyapatite discs after treatment with an acidic demineralization solution. Exposure to human gingival fibroblasts and human osteoblasts showed cytocompatibility of the hydrogel, demonstrating the potential for the successful treatment of dental caries in patients.


Subject(s)
Dental Caries , Tooth Demineralization , Dental Caries/drug therapy , Dental Caries/prevention & control , Fluorides/pharmacology , Humans , Hydrogels/pharmacology , Hydroxyapatites , Nitric Oxide , Streptococcus mutans/physiology , Tooth Demineralization/prevention & control
13.
ACS Appl Bio Mater ; 5(5): 2212-2223, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35404571

ABSTRACT

Multifunctional antithrombotic surface modifications for blood-contacting medical devices have emerged as a solution for foreign surface-mediated coagulation disturbance. Herein, we have developed and evaluated an endothelium-inspired strategy to reduce the thrombogenicity of medical plastics by imparting nitric oxide (NO) elution and heparin immobilization on the material surface. This dual-action approach (NO+Hep) was applied to polyethylene terephthalate (PET) blood incubation vials and compared to isolated modifications. Vials were characterized to evaluate NO surface flux as well as heparin density and activity. Hemocompatibility was assessed in vitro using whole blood from human donors. Compared to unmodified surfaces, blood incubated in the NO+Hep vials exhibited reduced platelet aggregation (15% decrease AUC, p = 0.040) and prolonged plasma clotting times (aPTT = 147% increase, p < 0.0001, prothrombin time = 5% increase, p = 0.0002). Prolongation of thromboelastography reaction time and elevated antifactor Xa levels in blood from NO+Hep versus PET vials suggests some heparin leaching from the vial surface, confirmed by post-blood incubation heparin density assessment. Results suggest NO+Hep surface modification is a promising approach for blood-contacting plastics; however, careful tuning of NO flux and heparin stabilization are essential and require assessment using human blood as performed here.


Subject(s)
Blood Coagulation , Heparin , Endothelium , Heparin/pharmacology , Humans , Nitric Oxide , Plastics
14.
ACS Appl Bio Mater ; 5(4): 1519-1527, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35343228

ABSTRACT

Although frequently used, venous catheters are often associated with serious complications such as infection and thrombosis. Lock solution therapies are clinically used to deter these issues but generally address only infection or thrombosis with limited success. Here, we report the development of a dual-functional lock therapy using nitric oxide (NO) donor molecule, S-nitrosoglutathione (GSNO). NO is a potent, broad-spectrum antimicrobial agent that also temporarily inhibits platelet activation, preventing thrombosis. Furthermore, NO has antibiofilm actions, an ability that traditional antibiotic lock solutions lack, thus limiting their efficacy. In this work, different concentrations of GSNO were characterized via NO analysis to determine a range of NO-releasing lock solution (NOreLS) concentrations to investigate and to demonstrate prolonged potential efficacy. Tested against clinically used vancomycin and gentamicin lock solutions, GSNO-based NOreLS repeatedly outperformed in models of different stages of catheter infections. NOreLS also prevented clot formation when exposed to whole blood, showing increased efficacy compared to a heparin lock solution. Moreover, NOreLS was demonstrated to be biocompatible via hemolysis and cytotoxicity assays. NOreLS has excellent potential for safely and effectively preventing infection and thrombosis related to catheter usage.


Subject(s)
Catheter-Related Infections , Thrombosis , Anti-Bacterial Agents/pharmacology , Catheter-Related Infections/prevention & control , Humans , Nitric Oxide , Thrombosis/prevention & control , Vancomycin/pharmacology
15.
J Colloid Interface Sci ; 608(Pt 1): 1015-1024, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34785450

ABSTRACT

Addressing thrombosis and biofouling of indwelling medical devices within healthcare institutions is an ongoing problem. In this work, two types of ultra-low fouling surfaces (i.e., superhydrophobic and lubricant-infused slippery surfaces) were fabricated to enhance the biocompatibility of commercial medical grade silicone rubber (SR) tubes that are widely used in clinical care. The superhydrophobic (SH) coatings on the tubing substrates were successfully created by dip-coating in superhydrophobic paints consisting of polydimethylsiloxane (PDMS), perfluorosilane-coated hydrophobic zinc oxide (ZnO) and copper (Cu) nanoparticles (NPs) in tetrahydrofuran (THF). The SH surfaces were converted to lubricant-infused slippery (LIS) surfaces through the infusion of silicone oil. The anti-biofouling properties of the coatings were investigated by adsorption of platelets, whole blood coagulation, and biofilm formation in vitro. The results revealed that the LIS tubes possess superior resistance to clot formation and platelet adhesion than uncoated and SH tubes. In addition, bacterial adhesion was investigated over 7 days in a drip-flow bioreactor, where the SH-ZnO-Cu tube and its slippery counterpart significantly reduced bacterial adhesion and biofilm formation of Escherichia coli relative to control tubes (>5 log10 and >3 log10 reduction, respectively). The coatings also demonstrated good compatibility with fibroblast cells. Therefore, the proposed coatings may find potential applications in high-efficiency on-demand prevention of biofilm and thrombosis formation on medical devices to improve their biocompatibility and reduce the risk of complications from medical devices.


Subject(s)
Biofouling , Thrombosis , Bacterial Adhesion , Biofilms , Biofouling/prevention & control , Humans , Hydrophobic and Hydrophilic Interactions , Surface Properties , Thrombosis/prevention & control
16.
Prog Mater Sci ; 1302022 Oct.
Article in English | MEDLINE | ID: mdl-36660552

ABSTRACT

When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.

17.
ACS Appl Mater Interfaces ; 13(48): 56931-56943, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34818503

ABSTRACT

It has been previously demonstrated that metal nanoparticles embedded into polymeric materials doped with nitric oxide (NO) donor compounds can accelerate the release rate of NO for therapeutic applications. Despite the advantages of elevated NO surface flux for eradicating opportunistic bacteria in the initial hours of application, metal nanoparticles can often trigger a secondary biocidal effect through leaching that can lead to unfavorable cytotoxic responses from host cells. Alternatively, copper-based metal organic frameworks (MOFs) have been shown to stabilize Cu2+/1+ via coordination while demonstrating longer-term catalytic performance compared to their salt counterparts. Herein, the practical application of MOFs in NO-releasing polymeric substrates with an embedded NO donor compound was investigated for the first time. By developing composite thermoplastic silicon polycarbonate polyurethane (TSPCU) scaffolds, the catalytic effects achievable via intrapolymeric interactions between an MOF and NO donor compound were investigated using the water-stable copper-based MOF H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O (CuBTTri) and the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). By creating a multifunctional triple-layered composite scaffold with CuBTTri and SNAP, the surface flux of NO from catalyzed SNAP decomposition was found tunable based on the variable weight percent CuBTTri incorporation. The tunable NO surface fluxes were found to elicit different cytotoxic responses in human cell lines, enabling application-specific tailoring. Challenging the TSPCU-NO-MOF composites against 24 h bacterial growth models, the enhanced NO release was found to elicit over 99% reduction in adhered and over 95% reduction in planktonic methicillin-resistant Staphylococcus aureus, with similar results observed for Escherichia coli. These results indicate that the combination of embedded MOFs and NO donors can be used as a highly efficacious tool for the early prevention of biofilm formation on medical devices.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biomimetic Materials/pharmacology , Metal-Organic Frameworks/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Catalysis , Cells, Cultured , Copper/chemistry , Humans , Materials Testing , Microbial Sensitivity Tests , Molecular Conformation , Nitric Oxide Donors/chemical synthesis , Nitric Oxide Donors/chemistry , Particle Size , Surface Properties
18.
ACS Appl Mater Interfaces ; 13(44): 52425-52434, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34723458

ABSTRACT

Foreign body response and infection are two universal complications that occur with indwelling medical devices. In response, researchers have developed different antimicrobial and antifouling surface strategies to minimize bacterial colonization and fibrous encapsulation. In this study, the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) and silicone oil were impregnated into silicone rubber cannulas (SR-SNAP-Si) using a solvent swelling method to improve the antimicrobial properties and decrease the foreign body response. The fabricated SR-SNAP-Si cannulas demonstrated a stable, prolonged NO release, exhibited minimal SNAP leaching, and maintained sliding angles < 15° for 21 days. SR-SNAP-Si cannulas displayed enhanced antimicrobial efficacy against Staphylococcus aureus in a 7-day biofilm bioreactor study, reducing the viability of adhered bacteria by 99.2 ± 0.2% compared to unmodified cannulas while remaining noncytotoxic toward human fibroblast cells. Finally, SR-SNAP-Si cannulas were evaluated for the first time in a 14- and 21-day subcutaneous mouse model, showing significantly enhanced biocompatibility compared to control cannulas by reducing the thickness of fibrous encapsulation by 60.9 ± 6.1 and a 60.8 ± 10.5% reduction in cell density around the implant site after 3 weeks. Thus, this work demonstrates that antifouling, NO-releasing surfaces can improve the lifetime and safety of indwelling medical devices.

19.
ACS Appl Mater Interfaces ; 13(37): 43892-43903, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34516076

ABSTRACT

Despite technological advancement, nosocomial infections are prevalent due to the rise of antibiotic resistance. A combinatorial approach with multimechanistic antibacterial activity is desired for an effective antibacterial medical device surface strategy. In this study, an antimicrobial peptide, nisin, is immobilized onto biomimetic nitric oxide (NO)-releasing medical-grade silicone rubber (SR) via mussel-inspired polydopamine (PDA) as a bonding agent to reduce the risk of infection. Immobilization of nisin on NO-releasing SR (SR-SNAP-Nisin) and the surface characteristics were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy and contact angle measurements. The NO release profile (7 days) and diffusion of SNAP from SR-SNAP-Nisin were quantified using chemiluminescence-based nitric oxide analyzers and UV-vis spectroscopy, respectively. Nisin quantification showed a greater affinity of nisin immobilization toward SNAP-doped SR. Matrix-assisted laser desorption/ionization mass spectrometry analysis on surface nisin leaching for 120 h under physiological conditions demonstrated the stability of nisin immobilization on PDA coatings. SR-SNAP-Nisin shows versatile in vitro anti-infection efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus in the planktonic and adhered states. Furthermore, the combination of NO and nisin has a superior ability to impair biofilm formation on polymer surfaces. SR-SNAP-Nisin leachates did not elicit cytotoxicity toward mouse fibroblast cells and human umbilical vein endothelial cells, indicating the biocompatibility of the material in vitro. The preventative and therapeutic potential of SR-SNAP-Nisin dictated by two bioactive agents may offer a promising antibacterial surface strategy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Immobilized Proteins/pharmacology , Nisin/pharmacology , Nitric Oxide Donors/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Biofilms/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/physiology , Immobilized Proteins/chemistry , Immobilized Proteins/toxicity , Indoles/chemistry , Indoles/toxicity , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Nisin/chemistry , Nisin/toxicity , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/toxicity , Polymers/chemistry , Polymers/toxicity , S-Nitroso-N-Acetylpenicillamine/chemistry , S-Nitroso-N-Acetylpenicillamine/toxicity , Silicone Elastomers/chemistry , Silicone Elastomers/toxicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
20.
J Colloid Interface Sci ; 590: 277-289, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33548611

ABSTRACT

Halloysite nanotubes (HNTs) are natural aluminosilicate clay that have been extensivelyexplored fordelivery of bioactive agents in biomedical applications because of their desirable features including unique hollow tubular structure, good biocompatibility, high mechanical strength, and extensive functionality. For the first time, in this work, functionalized HNTs are developed as a delivery platform for nitric oxide (NO), a gaseous molecule, known for its important roles in the regulation of various physiological processes. HNTs were first hydroxylated and modified with an aminosilane crosslinker, (3-aminopropyl) trimethoxysilane (APTMS), to enable the covalent attachment of a NO donor precursor, N-acetyl-d-penicillamine (NAP). HNT-NAP particles were then converted to NO-releasing S-nitroso-N-acetyl-penicillamine HNT-SNAP by nitrosation. The total NO loading on the resulting nanotubes was 0.10 ± 0.07 µmol/mg which could be released using different stimuli such as heat and light. Qualitative (Fourier-transform infrared spectroscopy and Nuclear magnetic resonance) and quantitative (Ninhydrin and Ellman) analyses were performed to confirm successful functionalization of HNTs at each step. Field emission scanning electron microscopy (FE-SEM) showed that the hollow tubular morphology of the HNTs was preserved after modification. HNT-SNAP showed concentration-dependent antibacterial effects against Gram-positive Staphylococcus aureus (S. aureus), resulting in up to 99.6% killing efficiency at a concentration of 10 mg/mL as compared to the control. Moreover, no significant cytotoxicity toward 3T3 mouse fibroblast cells was observed at concentrations equal or below 2 mg/mL of HNT-SNAP according to a WST-8-based cytotoxicity assay. The SNAP-functionalized HNTs represent a novel and efficient NO delivery system that holds the potential to be used, either alone or in combination with polymers for different biomedical applications.


Subject(s)
Nanotubes , Nitric Oxide , Aluminum Silicates , Animals , Clay , Mice , Polymers , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...