Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Bioinformatics ; 39(10)2023 10 03.
Article in English | MEDLINE | ID: mdl-37740324

ABSTRACT

SUMMARY: We present the phippery software suite for analyzing data from phage display methods that use immunoprecipitation and deep sequencing to capture antibody binding to peptides, often referred to as PhIP-Seq. It has three main components that can be used separately or in conjunction: (i) a Nextflow pipeline, phip-flow, to process raw sequencing data into a compact, multidimensional dataset format and allows for end-to-end automation of reproducible workflows. (ii) a Python API, phippery, which provides interfaces for tasks such as count normalization, enrichment calculation, multidimensional scaling, and more, and (iii) a Streamlit application, phip-viz, as an interactive interface for visualizing the data as a heatmap in a flexible manner. AVAILABILITY AND IMPLEMENTATION: All software packages are publicly available under the MIT License. The phip-flow pipeline: https://github.com/matsengrp/phip-flow. The phippery library: https://github.com/matsengrp/phippery. The phip-viz Streamlit application: https://github.com/matsengrp/phip-viz.


Subject(s)
Imidazoles , Software , Gene Library , Peptides
2.
Cell Chem Biol ; 30(11): 1377-1389.e8, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37586370

ABSTRACT

TruAB Discovery is an approach that integrates cellular immunology, high-throughput immunosequencing, bioinformatics, and computational biology in order to discover naturally occurring human antibodies for prophylactic or therapeutic use. We adapted our previously described pairSEQ technology to pair B cell receptor heavy and light chains of SARS-CoV-2 spike protein-binding antibodies derived from enriched antigen-specific memory B cells and bulk antibody-secreting cells. We identified approximately 60,000 productive, in-frame, paired antibody sequences, from which 2,093 antibodies were selected for functional evaluation based on abundance, isotype and patterns of somatic hypermutation. The exceptionally diverse antibodies included RBD-binders with broad neutralizing activity against SARS-CoV-2 variants, and S2-binders with broad specificity against betacoronaviruses and the ability to block membrane fusion. A subset of these RBD- and S2-binding antibodies demonstrated robust protection against challenge in hamster and mouse models. This high-throughput approach can accelerate discovery of diverse, multifunctional antibodies against any target of interest.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Antibodies, Viral
3.
Arch Virol ; 167(11): 2193-2201, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35871426

ABSTRACT

Identifying epitope targets by studying the native antibody (Ab) response can identify potential novel vaccine constructs. Studies suggest that long-term non-progressor (LTNP) subjects have inherent immune mechanisms that help to control viremia and disease progression. To explore a role for antibodies (Abs) in LTNP progression, our lab has previously characterized a number of highly mutated Abs that target conformational epitopes of the human immunodeficiency virus (HIV) envelope protein from a single LTNP subject (10076). One Ab clone, 10076-Q3-2C6, had significant cross-clade Ab-dependent cell cytotoxicity. To assess if other LTNP subjects produced similar Abs, we expressed another highly mutated Ab from another subject; subject 10002, clone 10002-Q1-3F2 (variable heavy chain, 63.2% amino acid sequence identity to predicted germline). After expression with its native light chain, the recombinant Ab 3F2 bound to the trimeric envelope protein of HIV (trimer), as well as to the ectodomain of gp41. 3F2 binding to gp41 peptide libraries was consistent with non-linear epitope binding and showed possible overlap with the epitope of 2C6. Ab competition assays suggested that 3F2 may bind near the immunodominant epitope 1 loop region (ID1) of gp41. 2C6 blocked the binding of ID1-loop-binding Abs and 3F2 to the trimer, but 3F2 failed to block 2C6 binding. Together, these results suggest that 3F2 binds to a non-linear conformational epitope primarily localized between the epitope of 2C6 and the ID1. Since they are targeted by functional Abs, a more complete understanding of these ID1 and near-ID1 epitopes may be exploited in future immunization strategies.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Monoclonal , Antibody-Dependent Cell Cytotoxicity , Epitopes , HIV Antibodies , HIV Envelope Protein gp41/genetics , HIV-1/genetics , Humans , Immunodominant Epitopes , Peptide Library
4.
Vaccine ; 40(31): 4174-4181, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35688727

ABSTRACT

In studies on monoclonal IgG antibodies (mAbs) from long-term non-progressors (LTNPs), our laboratory has previously described highly mutated Abs against a complex conformational epitope with contributions from both gp41 the N terminal and C terminal heptad repeat helices. Despite using the VH1-2 gene segment, known to contribute to some of the broadest neutralizing Abs against HIV, members of these Abs, termed group 76C Abs, did not exhibit broad neutralization. Because of the high number of mutations and use of VH1-2, our goal was to characterize the non-neutralizing functions of Abs of group 76C, to assess if targeting of the epitope correlates with LTNP, and to assess the maturation of these Abs by comparison to their predicted common ancestor. Serum competition assays showed group 76C Abs were enriched in LTNPs, in comparison to VRC-01. Specific group 76C clones 6F5 and 6F11, expressed as recombinant Abs, both have robust ADCC activity, despite their sequence disparity. Sequence analysis predicted the common ancestor of this clonal group would utilize the germline non-mutated variable gene. We produced a recombinant ancestor Ab (76Canc) with a heavy chain utilizing the germline variable gene sequence paired to the 6F5 light chain. Competition with group 76C recombinant Ab 6F5 confirms 76Canc binds HIV envelope constructs near the original group C epitope. 76Canc demonstrates comparable ADCC to 6F5 and 6F11 when using gp41 constructs of both clade B and clade C. The functional capability of Abs utilizing germline VH1-2 has implications for disease control and vaccine development.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibody-Dependent Cell Cytotoxicity , Epitopes , HIV Antibodies , HIV Envelope Protein gp41/genetics , HIV-1/genetics , Humans
5.
PLoS Pathog ; 18(4): e1010155, 2022 04.
Article in English | MEDLINE | ID: mdl-35404959

ABSTRACT

Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses resemble the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Differences in macaque species and exposure type may also contribute to these findings.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes , Humans , Macaca mulatta , Spike Glycoprotein, Coronavirus , Vaccination
6.
Elife ; 112022 01 24.
Article in English | MEDLINE | ID: mdl-35072628

ABSTRACT

Background: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal. Methods: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions, we determined potential sites of escape by comparing antibody binding of peptides containing wild-type residues versus peptides containing a mutant residue. Results: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination. Conclusions: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests that protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level. Funding: This work was supported by NIH grants AI138709 (PI JMO) and AI146028 (PI FAM). JMO received support as the Endowed Chair for Graduate Education (FHCRC). The research of FAM was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation. Scientific Computing Infrastructure at Fred Hutch was funded by ORIP grant S10OD028685.


When SARS-CoV-2 ­ the virus that causes COVID-19 ­ infects our bodies, our immune system reacts by producing small molecules called antibodies that stick to a part of the virus called the spike protein. Vaccines are thought to work by triggering the production of similar antibodies without causing disease. Some of the most effective antibodies against SARS-CoV-2 bind a specific area of the spike protein called the 'receptor binding domain' or RBD. When SARS-CoV-2 evolves it creates a challenge for our immune system: mutations, which are changes in the virus's genetic code, can alter the shape of its spike protein, meaning that existing antibodies may no longer bind to it as effectively. This lowers the protection offered by past infection or vaccination, which makes it harder to tackle the pandemic. As it stands, it is not clear which mutations to the virus's genetic code can affect antibody binding, especially to portions outside the RBD. To complicate things further, the antibodies people produce in response to mild infection, severe infection, and vaccination, while somewhat overlapping, exhibit some differences. Studying these differences could help minimize emergence of mutations that allow the virus to 'escape' the antibody response. A phage display library is a laboratory technique in which phages (viruses that infect bacteria) are used as a 'repository' for DNA fragments that code for a specific protein. The phages can then produce the protein (or fragments of it), and if the protein fragments bind to a target, it can be easily detected. Garrett, Galloway et al. exploited this technique to study how different portions of the SARS-CoV-2 spike protein were bound by antibodies. They made a phage library in which each phage encoded a portion of the spike protein with different mutations, and then exposed the different versions of the protein to antibodies from people who had experienced prior infection, vaccination, or both. The experiment showed that antibodies produced during severe infection or after vaccination bound to similar parts of the spike protein, while antibodies from people who had experienced mild infection targeted fewer areas. Garrett, Galloway et al. also found that mutations that affected the binding of antibodies produced after vaccination were more consistent than mutations that interfered with antibodies produced during infection. While these results show which mutations are most likely to help the virus escape existing antibodies, this does not mean that the virus will necessarily evolve in that direction. Indeed, some of the mutations may be impossible for the virus to acquire because they interfere with the virus's ability to spread. Further studies could focus on revealing which of the mutations detected by Garrett, Galloway et al. are most likely to occur, to guide vaccine development in that direction. To help with this, Garrett, Galloway et al. have made the data accessible to other scientists and the public using a web tool.


Subject(s)
Antigenic Drift and Shift , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Epitopes , Humans , Mass Vaccination
7.
bioRxiv ; 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34909774

ABSTRACT

Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses recapitulate, and thus appropriately model, the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in humans and macaques following either vaccination or infection. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques.

8.
bioRxiv ; 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34642694

ABSTRACT

BACKGROUND: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal. METHODS: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions we determined potential escape mutations by comparing antibody binding of peptides containing wildtype residues versus peptides containing a mutant residue. RESULTS: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination. CONCLUSIONS: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge, they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level. FUNDING: This work was supported by NIH grants AI138709 (PI Overbaugh) and AI146028 (PI Matsen). Julie Overbaugh received support as the Endowed Chair for Graduate Education (FHCRC). The research of Frederick Matsen was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation. Scientific Computing Infrastructure at Fred Hutch was funded by ORIP grant S10OD028685.

9.
Cell Rep Med ; 2(6): 100314, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34195680

ABSTRACT

Increasing evidence suggests infants develop unique neutralizing antibody (nAb) responses to HIV compared to adults. Here, we dissected the nAb response of an infant whose virus is in clinical trials as a vaccine immunogen, with a goal of characterizing the broad responses in the infant to this antigen. We isolated 73 nAbs from infant BG505 and identified a large number of clonal families. Twenty-six antibodies neutralized tier 2 viruses-in some cases, viruses from the same clade as BG505, and in others, a different clade, although none showed notable breadth. Several nAbs demonstrated antibody-dependent cellular cytotoxicity activity and targeted the V3 loop. These findings suggest an impressive polyclonal response to HIV infection in infant BG505, adding to the growing evidence that the nAb response to HIV in infants is polyclonal-a desirable vaccine response to a rapidly evolving virus like HIV.


Subject(s)
Antibodies, Neutralizing/biosynthesis , B-Lymphocytes/immunology , HIV Antibodies/biosynthesis , HIV Infections/prevention & control , HIV-1/immunology , Immunoglobulin G/biosynthesis , Adult , Amino Acid Sequence , Antibodies, Neutralizing/classification , Antibody-Dependent Cell Cytotoxicity , B-Lymphocytes/virology , Child, Preschool , Clone Cells , Epitopes/chemistry , HIV Antibodies/classification , HIV Infections/immunology , HIV Infections/virology , Humans , Immunoglobulin G/classification , Male
10.
Cell Rep ; 35(8): 109164, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33991511

ABSTRACT

A major goal of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efforts is to elicit antibody responses that confer protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for vaccine design, diagnostics, and development of therapeutics. Here, we develop a pan-coronavirus phage display library to map antibody binding sites at high resolution within the complete viral proteomes of all known human-infecting coronaviruses in patients with mild or moderate/severe coronavirus disease 2019 (COVID-19). We find that the majority of immune responses to SARS-CoV-2 are targeted to the spike protein, nucleocapsid, and ORF1ab and include sites of mutation in current variants of concern. Some epitopes are identified in the majority of samples, while others are rare, and we find variation in the number of epitopes targeted between individuals. We find low levels of SARS-CoV-2 cross-reactivity in individuals with no exposure to the virus and significant cross-reactivity with endemic human coronaviruses (CoVs) in convalescent sera from patients with COVID-19.


Subject(s)
COVID-19/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/immunology , Adult , Aged , Antibodies, Viral/immunology , Binding Sites, Antibody , COVID-19/virology , Cell Surface Display Techniques , Coronavirus/immunology , Cross Reactions , Female , HEK293 Cells , Humans , Immunity , Male , Middle Aged , Nucleocapsid Proteins/immunology , Polyproteins/immunology , Serology , Young Adult
11.
Cell ; 184(11): 2927-2938.e11, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34010620

ABSTRACT

Defining long-term protective immunity to SARS-CoV-2 is one of the most pressing questions of our time and will require a detailed understanding of potential ways this virus can evolve to escape immune protection. Immune protection will most likely be mediated by antibodies that bind to the viral entry protein, spike (S). Here, we used Phage-DMS, an approach that comprehensively interrogates the effect of all possible mutations on binding to a protein of interest, to define the profile of antibody escape to the SARS-CoV-2 S protein using coronavirus disease 2019 (COVID-19) convalescent plasma. Antibody binding was common in two regions, the fusion peptide and the linker region upstream of the heptad repeat region 2. However, escape mutations were variable within these immunodominant regions. There was also individual variation in less commonly targeted epitopes. This study provides a granular view of potential antibody escape pathways and suggests there will be individual variation in antibody-mediated virus evolution.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Algorithms , COVID-19/therapy , COVID-19/virology , Cell Line , Gene Library , Humans , Immunization, Passive , Mutation , Protein Domains , SARS-CoV-2/genetics , Software , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
12.
Elife ; 102021 01 11.
Article in English | MEDLINE | ID: mdl-33427196

ABSTRACT

A prerequisite for the design of an HIV vaccine that elicits protective antibodies is understanding the developmental pathways that result in desirable antibody features. The development of antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) is particularly relevant because such antibodies have been associated with HIV protection in humans. We reconstructed the developmental pathways of six human HIV-specific ADCC antibodies using longitudinal antibody sequencing data. Most of the inferred naive antibodies did not mediate detectable ADCC. Gain of antigen binding and ADCC function typically required mutations in complementarity determining regions of one or both chains. Enhancement of ADCC potency often required additional mutations in framework regions. Antigen binding affinity and ADCC activity were correlated, but affinity alone was not sufficient to predict ADCC potency. Thus, elicitation of broadly active ADCC antibodies may require mutations that enable high-affinity antigen recognition along with mutations that optimize factors contributing to functional ADCC activity.


Nearly four decades after the human immunodeficiency virus (HIV for short) was first identified, the search for a vaccine still continues. An effective immunisation would require elements that coax the human immune system into making HIV-specific antibodies ­ the proteins that can recognise, bind to and deactivate the virus. Crucially, antibodies can also help white blood cells to target and destroy cells infected with HIV. This 'antibody-dependent cellular cytotoxicity' could be a key element of a successful vaccine, yet it has received less attention than the ability for antibodies to directly neutralize the virus. In particular, it is still unclear how antibodies develop the ability to flag HIV-infected cells for killing. Indeed, over the course of an HIV infection, an immune cell goes through genetic changes that tweak the 3D structure of the antibodies it manufactures. This process can improve the antibodies' ability to fight off the virus, but it was still unclear how it would shape antibody-dependent cellular cytotoxicity. To investigate this question, Doepker et al. retraced how the genes coding for six antibody families changed over time in an HIV-carrying individual. This revealed that antibodies could not initially trigger antibody-dependent cellular cytotoxicity. The property emerged and improved thanks to two types of alterations in the genetic sequences. One set of changes increased how tightly the antibodies could bind to the virus, targeting sections of the antibodies that can often vary. The second set likely altered the 3D structure in others ways, potentially affecting how antibodies bind the virus or how they interact with components of the immune system that help to kill HIV-infected cells. These alterations took place in segments of the antibodies that undergo less change over time. Ultimately, the findings by Doepker et al. suggest that an efficient HIV vaccine may rely on helping antibodies to evolve so they can bind more tightly to the virus and trigger cellular cytotoxicity more strongly.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , HIV Antibodies/immunology , HIV-1/immunology , AIDS Vaccines/immunology , Cell Line , Humans
13.
bioRxiv ; 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33236010

ABSTRACT

Defining long-term protective immunity to SARS-CoV-2 is one of the most pressing questions of our time and will require a detailed understanding of potential ways this virus can evolve to escape immune protection. Immune protection will most likely be mediated by antibodies that bind to the viral entry protein, Spike (S). Here we used Phage-DMS, an approach that comprehensively interrogates the effect of all possible mutations on binding to a protein of interest, to define the profile of antibody escape to the SARS-CoV-2 S protein using COVID-19 convalescent plasma. Antibody binding was common in two regions: the fusion peptide and linker region upstream of the heptad repeat region 2. However, escape mutations were variable within these immunodominant regions. There was also individual variation in less commonly targeted epitopes. This study provides a granular view of potential antibody escape pathways and suggests there will be individual variation in antibody-mediated virus evolution.

14.
iScience ; 23(10): 101622, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33089110

ABSTRACT

Understanding the antibody response is critical to developing vaccine and antibody-based therapies and has inspired the recent development of new methods to isolate antibodies. Methods to define the antibody-antigen interactions that determine specificity or allow escape have not kept pace. We developed Phage-DMS, a method that combines two powerful approaches-immunoprecipitation of phage peptide libraries and deep mutational scanning (DMS)-to enable high-throughput fine mapping of antibody epitopes. As an example, we designed sequences encoding all possible amino acid variants of HIV Envelope to create phage libraries. Using Phage-DMS, we identified sites of escape predicted using other approaches for four well-characterized HIV monoclonal antibodies with known linear epitopes. In some cases, the results of Phage-DMS refined the epitope beyond what was determined in previous studies. This method has the potential to rapidly and comprehensively screen many antibodies in a single experiment to define sites essential for binding interactions.

15.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32075936

ABSTRACT

Infants of HIV-positive mothers can acquire HIV infection by various routes, but even in the absence of antiviral treatment, the majority of these infants do not become infected. There is evidence that maternal antibodies provide some protection from infection, but gestational maternal antibodies have not yet been characterized in detail. One of the most studied vertically infected infants is BG505, as the virus from this infant yielded an Envelope protein that was successfully developed as a stable trimer. Here, we isolated and characterized 39 HIV-specific neutralizing monoclonal antibodies (nAbs) from MG505, the mother of BG505, at a time point just prior to vertical transmission. These nAbs belonged to 21 clonal families and employed a variety of VH genes. Many were specific for the HIV-1 Env V3 loop, and this V3 specificity correlated with measurable antibody-dependent cellular cytotoxicity (ADCC) activity. The isolated nAbs did not recapitulate the full breadth of heterologous or autologous virus neutralization by contemporaneous plasma. Notably, we found that the V3-targeting nAb families neutralized one particular maternal Env variant, even though all tested variants had low V3 sequence diversity and were measurably bound by these nAbs. None of the nAbs neutralized BG505 transmitted virus. Furthermore, the MG505 nAb families were found at relatively low frequencies within the maternal B cell repertoire; all were less than 0.25% of total IgG sequences. Our findings illustrate an example of the diversity of HIV-1 nAbs within one mother, cumulatively resulting in a collection of antibody specificities that can contribute to the transmission bottleneck.IMPORTANCE Mother-to-child-transmission of HIV-1 offers a unique setting in which maternal antibodies both within the mother and passively transferred to the infant are present at the time of viral exposure. Untreated HIV-exposed human infants are infected at a rate of 30 to 40%, meaning that some infants do not get infected despite continued exposure to virus. Since the potential of HIV-specific immune responses to provide protection against HIV is a central goal of HIV vaccine design, understanding the nature of maternal antibodies may provide insights into immune mechanisms of protection. In this study, we isolated and characterized HIV-specific antibodies from the mother of an infant whose transmitted virus has been well studied.


Subject(s)
HIV Antibodies/immunology , HIV-1/immunology , AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Specificity , Epitopes/immunology , Female , HIV Infections/virology , Humans , Infant , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy , Pregnancy Complications, Infectious/virology , env Gene Products, Human Immunodeficiency Virus/immunology
16.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31217246

ABSTRACT

Previous studies in our laboratory characterized a panel of highly mutated HIV-specific conformational epitope-targeting antibodies (Abs) from a panel of HIV-infected long-term nonprogressors (LTNPs). Despite binding HIV envelope protein and having a high number of somatic amino acid mutations, these Abs had poor neutralizing activity. Because of the evidence of antigen-driven selection and the long CDR3 region (21 amino acids [aa]), we further characterized the epitope targeting of monoclonal Ab (MAb) 76-Q3-2C6 (2C6). We confirmed that 2C6 binds preferentially to trimeric envelope and recognizes the clades A, B, and C SOSIP trimers. 2C6 binds gp140 constructs of clades A, B, C, and D, suggesting a conserved binding site that we localized to the ectodomain of gp41. Ab competition with MAb 50-69 suggested this epitope localizes near aa 579 to 613 (referenced to HXB2 gp160). Peptide library scanning showed consistent binding in this region but to only a single peptide. Lack of overlapping peptide binding supported a nonlinear epitope structure. The significance of this site is supported by 2C6 having Ab-dependent cell cytotoxicity (ADCC) against envelope proteins from two clades. Using 2C6 and variants, alanine scanning mutagenesis identified three amino acids (aa 592, 595, and 596) in the overlapping region of the previously identified peptide. Additional amino acids at sites 524 and 579 were also identified, helping explain its conformational requirement. The fact that different amino acids were included in the epitope depending on the targeted protein supports the conclusion that 2C6 targets a native conformational epitope. When we mapped these amino acids on the trimerized structure, they spanned across oligomers, supporting the notion that the epitope targeted by 2C6 lies in a recessed pocket between two gp41 oligomers. A complete understanding of the epitope specificity of ADCC-mediating Abs is essential for developing effective immunization strategies that optimize protection by these Abs.IMPORTANCE This paper further defines the function and area of the HIV trimeric envelope protein targeted by the monoclonal antibody 2C6. 2C6 binding is influenced by amino acid mutations across two separate gp41 sections of the envelope trimer. This epitope is recognized on multiple clades (variant groups of circulating viruses) of gp41, gp140 trimers, and SOSIP trimers. For the clades tested, 2C6 has robust ADCC. As the target of 2C6 is available in the major clades of HIV and has robust ADCC activity, further definition and appreciation of targeting of antibodies similar to 2C6 during vaccine development should be considered.


Subject(s)
Antibodies, Monoclonal/pharmacology , Epitopes/immunology , HIV Envelope Protein gp41/chemistry , HIV Infections/immunology , HIV-1/immunology , Amino Acid Motifs , Antibodies, Neutralizing/pharmacology , Antibody-Dependent Cell Cytotoxicity , Epitopes/chemistry , Epitopes/genetics , HEK293 Cells , HIV Antibodies/pharmacology , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/immunology , HIV-1/drug effects , HIV-1/genetics , Humans , Mutation , Protein Conformation/drug effects
17.
PLoS Pathog ; 15(2): e1007572, 2019 02.
Article in English | MEDLINE | ID: mdl-30779811

ABSTRACT

Antibodies that mediate killing of HIV-infected cells through antibody-dependent cellular cytotoxicity (ADCC) have been implicated in protection from HIV infection and disease progression. Despite these observations, these types of HIV antibodies are understudied compared to neutralizing antibodies. Here we describe four monoclonal antibodies (mAbs) obtained from one individual that target the HIV transmembrane protein, gp41, and mediate ADCC activity. These four mAbs arose from independent B cell lineages suggesting that in this individual, multiple B cell responses were induced by the gp41 antigen. Competition and phage peptide display mapping experiments suggested that two of the mAbs target epitopes in the cysteine loop that are highly conserved and a common target of HIV gp41-specific antibodies. The amino acid sequences that bind these mAbs are overlapping but distinct. The two other mAbs were competed by mAbs that target the C-terminal heptad repeat (CHR) and the fusion peptide proximal region (FPPR) and appear to both target a similar unique conformational epitope. These gp41-specific mAbs mediated killing of infected cells that express high levels of Env due to either pre-treatment with interferon or deletion of vpu to increase levels of BST-2/Tetherin. They also mediate killing of target cells coated with various forms of the gp41 protein, including full-length gp41, gp41 ectodomain or a mimetic of the gp41 stump. Unlike many ADCC mAbs that target HIV gp120, these gp41-mAbs are not dependent on Env structural changes associated with membrane-bound CD4 interaction. Overall, the characterization of these four new mAbs that target gp41 and mediate ADCC provides evidence for diverse gp41 B cell lineages with overlapping but distinct epitopes within an individual. Such antibodies that can target various forms of envelope protein could represent a common response to a relatively conserved HIV epitope for a vaccine.


Subject(s)
HIV Antibodies/immunology , HIV Envelope Protein gp41/immunology , Amino Acid Sequence , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antibody-Dependent Cell Cytotoxicity/physiology , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/immunology , HIV Antibodies/physiology , HIV Infections/immunology , HIV-1/immunology , Humans , Neutralization Tests/methods
18.
Hosp Pharm ; 52(5): 341-347, 2017 May.
Article in English | MEDLINE | ID: mdl-28804149

ABSTRACT

The complexity of cancer chemotherapy requires pharmacists be familiar with the complicated regimens and highly toxic agents used. This column reviews various issues related to preparation, dispensing, and administration of antineoplastic therapy, and the agents, both commercially available and investigational, used to treat malignant diseases. Questions or suggestions for topics should be addressed to Dominic A. Solimando, Jr, President, Oncology Pharmacy Services, Inc, 4201 Wilson Blvd #110-545, Arlington, VA 22203, e-mail: OncRxSvc@comcast.net; or J. Aubrey Waddell, Professor, University of Tennessee College of Pharmacy; Oncology Pharmacist, Pharmacy Department, Blount Memorial Hospital, 907 E. Lamar Alexander Parkway, Maryville, TN 37804, e-mail: waddfour@charter.net. The information presented in this review is based on published data and clinical expertise and includes information not included in the product labeling. Incorporation of such published data provides a more robust assessment of the drugs and assists pharmacists in evaluation of orders for off-label use of these agents.

19.
J Immunol ; 195(1): 246-56, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26026062

ABSTRACT

Previous work has shown conflicting roles for Tec family kinases in regulation of TLR-dependent signaling in myeloid cells. In the present study, we performed a detailed investigation of the role of the Tec kinases Btk and Tec kinases in regulating TLR signaling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less proinflammatory cytokines in response to TLR stimulation than do wild-type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more proinflammatory cytokines than do wild-type cells. We then compared the phosphoproteome regulated by Tec kinases and LPS in primary peritoneal and bone marrow-derived macrophages. From this analysis we determined that Tec kinases regulate different signaling programs in these cell types. In additional studies using bone marrow-derived macrophages, we found that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signaling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signaling in many types of myeloid cells. However, our data also support a cell type-specific TLR inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signaling via PI3K.


Subject(s)
Macrophages/immunology , Phosphoproteins/immunology , Protein-Tyrosine Kinases/immunology , Agammaglobulinaemia Tyrosine Kinase , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Gene Expression Profiling , Gene Expression Regulation , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Peritoneal Cavity/cytology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Phosphoproteins/genetics , Phosphorylation , Primary Cell Culture , Protein-Tyrosine Kinases/genetics , Signal Transduction , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
20.
Genome Announc ; 2(6)2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25477397

ABSTRACT

Antimicrobial resistance is a significant public health issue. We report here the draft genome sequences of three drug-resistant strains of commensal Escherichia coli isolated from a single healthy college student. Each strain has a distinct genome, but two of the three contain an identical large plasmid with multiple resistance genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...