Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Compr Rev Food Sci Food Saf ; 23(2): e13306, 2024 03.
Article in English | MEDLINE | ID: mdl-38369928

ABSTRACT

Biobased natural polymers, including polymers of natural origin such as casein, are growing rapidly in the light of the environmental pollution caused by many mass-produced commercial synthetic polymers. Although casein has interesting intrinsic properties, especially for the food industry, numerous chemical reactions have been carried out to broaden the range of its properties, most of them preserving casein's nontoxicity and biodegradability. New conjugates and graft copolymers have been developed especially by Maillard reaction of the amine functions of the casein backbone with the aldehyde functions of sugars, polysaccharides, or other molecules. Carried out with dialdehydes, these reactions lead to the cross-linking of casein giving three-dimensional polymers. Acylation and polymerization of various monomers initiated by amine functions are also described. Other reactions, far less numerous, involve alcohol and carboxylic acid functions in casein. This review provides an overview of casein-based conjugates and graft copolymers, their properties, and potential applications.


Subject(s)
Caseins , Polymers , Caseins/chemistry , Polymers/chemistry , Polysaccharides/chemistry , Amines
2.
Nanotechnology ; 34(48)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37647881

ABSTRACT

The design of a biomimetic scaffold is a major challenge in tissue engineering to promote tissue reconstruction. The use of synthetic polymer nanofibers is widely described as they provide biocompatible matrices whose topography mimics natural extracellular matrix (ECM). To closely match the biochemical composition of the ECM, bioactive molecules such as gelatin are added to the nanofibers to enhance cell adhesion and proliferation. To overcome the rapid solubilization of gelatin in biological fluids and to allow a lasting biological effect, the covalent crosslinking of this macromolecule in the network is crucial. The sol-gel route offers the possibility of gentle crosslinking during shaping but is rarely combined with electrospinning. In this study, we present the creation of Poly(lactic acid)/Gelatin hybrid nanofibers by sol-gel route during electrospinning. To enable sol-gel crosslinking, we synthesized star-shaped PLA and functionalized it with silane groups; then we functionalized gelatin with the same groups for their subsequent reaction with the polymer and thus the creation of the hybrid nanonetwork. We evaluated the impact of the presence of gelatin in Poly(lactic acid)/Gelatin hybrid nanofibers at different percentages on the mechanical properties, nanonetwork crosslinking, degradation and biological properties of the hybrid nanofibers. The addition of gelatin modulated nanonetwork crosslinking that impacted the stiffness of the nanofibers, resulting in softer materials for the cells. Moreover, these hybrid nanofibers also showed a significant improvement in fibroblast proliferation and present a degradation rate suitable for tissue reconstruction. Finally, the bioactive hybrid nanofibers possess versatile properties, interesting for various potential applications in tissue reconstruction.


Subject(s)
Gelatin , Nanofibers , Polyesters , Polymers
3.
Macromol Rapid Commun ; 44(15): e2300156, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37073891

ABSTRACT

Hydrophilic chitosan (CHT) and hydrophobic polyε-caprolactone (PCL) are well-known biocompatible and biodegradable polymers that have many applications in the biomedical and pharmaceutical fields. But the mixtures of these two compounds are considered incompatible, which makes them not very interesting. To avoid this problem and to further extend the properties of these homopolymers, the synthesis of a new graft copolymer, the fully biodegradable amphiphilic poly(ε-caprolactone-g-chitosan) (PCL-g-CHT) is described, with an unusual "reverse" structure formed by a PCL backbone with CHT grafts, unlike the "classic" CHT-g-PCL structure with a CHT main chain and PCL grafts. This copolymer is prepared via a copper-catalyzed 1,3-dipolar Huisgen cycloaddition between propargylated PCL (PCL-yne) and a new azido-chitosan (CHT-N3 ). In order to obtain an amphiphilic copolymer regardless of the pH, chitosan oligomers, soluble at any pH, are prepared and used. The amphiphilic PCL-g-CHT copolymer spontaneously self-assembles in water into nanomicelles that may incorporate hydrophobic drugs to give novel drug delivery systems.


Subject(s)
Chitosan , Chitosan/chemistry , Polymers , Polyesters/chemistry , Polyethylene Glycols/chemistry
4.
J Funct Biomater ; 14(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36826852

ABSTRACT

A relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging. An experimental gellan-xanthan hydrogel was then designed as carrier for ADP-5 and compared to the commercial gel Emdogain®. Alizarin Red was used to determine the periodontal ligament and cementoblasts cell mineralization. The inflammatory profile of these two cells was also quantified using ELISA (vascular endothelial growth factor A, tumor necrosis factor α, and interleukin 11) mediators. ADP-5 enhanced cell proliferation and remineralization; the 100 µg/mL concentration was more efficient than 50 and 200 µg/mL. The ADP-5 experimental hydrogel exhibited equivalent good biological behavior compared to Emdogain® in terms of cell colonization, mineralization, and inflammatory profile. These findings revealed relevant insights regarding the ADP-5 biological behavior. From a clinical perspective, these outcomes could instigate the development of novel functionalized scaffold for periodontal regeneration.

5.
Biomacromolecules ; 24(10): 4430-4443, 2023 10 09.
Article in English | MEDLINE | ID: mdl-36524541

ABSTRACT

Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.


Subject(s)
Hydrogels , Tissue Adhesives , Mice , Animals , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Adhesives/pharmacology , Tissue Adhesives/chemistry , Adhesives/pharmacology , Cyanoacrylates , Fibrin , Catechols , Methacrylates
6.
Food Chem ; 408: 135140, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36549158

ABSTRACT

Sodium caseinate is a well-known amphiphilic protein derived from natural products currently used for the preparation of edible films. To improve some properties, especially to decrease the hydrophilicity and water solubility of the caseinate, the covalent grafting of a hydrophobic edible fatty acid, namely oleic acid, onto caseinate, appears to be a solution. We describe a new synthesis method for the chemical modification of sodium caseinate involving the synthesis of an acid chloride derivative from oleic acid and a phase transfer catalysis reaction in a biphasic medium. Under these conditions, free amine and alcohol groups of the caseinate are likely to be grafted with a fairly high (>50 %) substitution degree. The caseinate derivative is finely characterized, in particular by DOSY NMR, to assess the formation of a casein/oleic acid grafted compound as well as the absence of residual oleic acid.


Subject(s)
Caseins , Oleic Acid , Caseins/chemistry , Fatty Acids , Solubility , Acids
7.
ACS Appl Mater Interfaces ; 15(1): 2077-2091, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36565284

ABSTRACT

In the biomedical field, degradable chemically crosslinked elastomers are interesting materials for tissue engineering applications, since they present rubber-like mechanical properties matching those of soft tissues and are able to preserve their three-dimensional (3D) structure over degradation. Their use in biomedical applications requires surgical handling and implantation that can be a source of accidental damages responsible for the loss of properties. Therefore, their inability to be healed after damage or breaking can be a major drawback. In this work, biodegradable dual-crosslinked networks that exhibit fast and efficient self-healing properties at 37 °C are designed. Self-healable dual-crosslinked (chemically and physically) elastomeric networks are prepared by two methods. The first approach is based on the mix of hydrophobic poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) star-shaped copolymers functionalized with either catechol or methacrylate moieties. In the second approach, hydrophobic bifunctional PEG-PLA star-shaped copolymers with both catechol and methacrylate on their structure are used. In the two systems, the supramolecular network is responsible for the self-healing properties, thanks to the dynamic dissociation/reassociation of the numerous hydrogen bonds between the catechol groups, whereas the covalent network ensures mechanical properties similar to pure methacrylate networks. The self-healable materials display mechanical properties that are compatible with soft tissues and exhibit linear degradation because of the chemical cross-links. The performances of networks from mixed copolymers versus bifunctional copolymers are compared and demonstrate the superiority of the latter. The biocompatibility of the materials is also demonstrated, confirming the potential of these degradable and self-healable elastomeric networks to be used for the design of temporary medical devices.


Subject(s)
Polyethylene Glycols , Polymers , Polymers/chemistry , Polyethylene Glycols/chemistry , Methacrylates , Catechols
8.
Molecules ; 27(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364164

ABSTRACT

Synthetic biopolymers are attractive alternatives to biobased polymers, especially because they rarely induce an immune response in a living organism. Poly ε-caprolactone (PCL) is a well-known synthetic aliphatic polyester universally used for many applications, including biomedical and environmental ones. Unlike poly lactic acid (PLA), PCL has no chiral atoms, and it is impossible to play with the stereochemistry to modify its properties. To expand the range of applications for PCL, researchers have investigated the possibility of grafting polymer chains onto the PCL backbone. As the PCL backbone is not functionalized, it must be first functionalized in order to be able to graft reactive groups onto the PCL chain. These reactive groups will then allow the grafting of new reagents and especially new polymer chains. Grafting of polymer chains is mainly carried out by "grafting from" or "grafting onto" methods. In this review we describe the main structures of the graft copolymers produced, their different synthesis methods, and their main characteristics and applications, mainly in the biomedical field.


Subject(s)
Polyesters , Polymers , Polyesters/chemistry , Polymers/chemistry , Caproates/chemistry , Lactones/chemistry
9.
ACS Appl Mater Interfaces ; 14(38): 43719-43731, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121931

ABSTRACT

In the biomedical field, self-rolling materials provide interesting opportunities to develop medical devices suitable for drug or cell encapsulation. However, to date, a major limitation for medical applications is the use of non-biodegradable and non-biocompatible polymers that are often reported for such applications or the slow actuation witnessed with degradable systems. In this work, biodegradable self-rolling tubes that exhibit a spontaneous and rapid actuation when immersed in water are designed. Photo-crosslinkable hydrophilic and hydrophobic poly(ethylene glycol)-poly(lactide) (PEG-PLA) star-shaped copolymers are prepared and used to prepare bilayered constructs. Thanks to the discrete mechanical and swelling properties of each layer and the cohesive/gradual nature of the interface, the resulting bilayered films are able to self-roll in water in less than 30 s depending on the nature of the hydrophilic layer and on the shape of the sample. The cytocompatibility and degradability of the materials are demonstrated and confirm the potential of such self-rolling resorbable biomaterials in the field of temporary medical devices.


Subject(s)
Elastomers , Hydrogels , Absorbable Implants , Biocompatible Materials/chemistry , Elastomers/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Water/chemistry
10.
Molecules ; 27(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807380

ABSTRACT

As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact resistance than petroleum-based plastics. To improve the mechanical properties of PLA, PLA-based blends are very often used, but the outcome does not meet expectations because of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option for improving the compatibility of these blends, which remains challenging. This review article reports on the various graft copolymers based on a PLA backbone and their syntheses following two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical post-polymerization modification of PLA. The main applications of these PLA graft copolymers in the environmental and biomedical fields are presented.


Subject(s)
Biocompatible Materials , Petroleum , Biocompatible Materials/chemistry , Plastics , Polyesters/chemistry , Polymers/chemistry
11.
Molecules ; 27(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807400

ABSTRACT

PLA nanofibers are of great interest in tissue engineering due to their biocompatibility and morphology; moreover, their physical properties can be tailored for long-lasting applications. One of the common and efficient methods to improve polymer properties and slow down their degradation is sol-gel covalent crosslinking. However, this method usually results in the formation of gels or films, which undervalues the advantages of nanofibers. Here, we describe a dual process sol-gel/electrospinning to improve the mechanical properties and stabilize the degradation of PLA scaffolds. For this purpose, we synthesized star-shaped PLAs and functionalized them with triethoxysilylpropyl groups (StarPLA-PTES) to covalently react during nanofibers formation. To achieve this, we evaluated the use of (1) a polymer diluent and (2) different molecular weights of StarPLA on electrospinnability, StarPLA-PTES condensation time and crosslinking efficiency. Our results show that the diluent allowed the fiber formation and reduced the condensation time, while the addition of low-molecular-weight StarPLA-PTES improved the crosslinking degree, resulting in stable matrices even after 6 months of degradation. Additionally, these materials showed biocompatibility and allowed the proliferation of fibroblasts. Overall, these results open the door to the fabrication of scaffolds with enhanced stability and prospective long-term applications.


Subject(s)
Nanofibers , Tissue Scaffolds , Biocompatible Materials , Gels , Polyesters , Polymers , Prospective Studies , Tissue Engineering
12.
Mater Sci Eng C Mater Biol Appl ; 129: 112339, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34579931

ABSTRACT

Electrospun scaffolds combine suitable structural characteristics that make them strong candidates for their use in tissue engineering. These features can be tailored to optimize other physiologically relevant attributes (e.g. mechanical anisotropy and cellular affinity) while ensuring adequate degradation rates of the biomaterial. Here, we present the fabrication of microstructured scaffolds by using a combination of micropatterned electrospinning collectors (honeycomb- or square-patterned) and poly(lactic acid) (PLA)-based copolymers (linear or star-shaped). The resulting materials showed appropriate macropore size and fiber alignment that were key parameters to enhance their anisotropic properties in protraction. Moreover, their elastic modulus, which was initially similar to that of soft tissues, gradually changed in hydrolytic conditions, matching the degradation profile in a 2- to 3-month period. Finally, honeycomb-structured scaffolds exhibited enhanced cellular proliferation compared to standard electrospun mats, while cell colonization was shown to be guided by the macropore contour. Taking together, these results provide new insight into the rational design of microstructured materials that can mimic the progressive evolution of properties in soft tissue regeneration.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Anisotropy , Biocompatible Materials , Polyesters
13.
Biomater Sci ; 9(18): 6203-6213, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34350906

ABSTRACT

There is a growing interest in magnetic nanocomposites in biomaterials science. In particular, nanocomposites that combine poly(lactide) (PLA) nanofibers and superparamagnetic iron oxide nanoparticles (SPIONs), which can be obtained by either electrospinning of a SPION suspension in PLA or by precipitating SPIONs at the surface of PLA, are well documented in the literature. However, these two classical processes yield nanocomposites with altered materials properties, and their long-term in vivo fate and performances have in most cases only been evaluated over short periods of time. Recently, we reported a new strategy to prepare well-defined PLA@SPION nanofibers with a quasi-monolayer of SPIONs anchored at the surface of PLA electrospun fibers. Herein, we report on a 6-month in vivo rat implantation study with the aim of evaluating the long-term magnetic resonance imaging (MRI) properties of this new class of magnetic nanocomposites, as well as their tissue integration and degradation. Using clinically relevant T2-weighted MRI conditions, we show that the PLA@SPION nanocomposites are clearly visible up to 6 months. We also evaluate here by histological analyses the slow degradation of the PLA@SPIONs, as well as their biocompatibility. Overall, these results make these nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.


Subject(s)
Magnetite Nanoparticles , Nanocomposites , Animals , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Polyesters , Rats
14.
J Mater Chem B ; 9(3): 832-845, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33347521

ABSTRACT

Peritendinous adhesions cause chronic pain and disability. Leading causes are trauma to tendons and surrounding tissues and immobilization after surgery. Adhesions occur between 24 hours to 6 weeks after surgery. Anti-adhesion barriers are currently the best option available to prevent peritendinous adhesions, but are ineffective and difficult to use. We developed an anti-adhesive membrane that can be easily applied during tendon surgery and effectively prevent adhesions. The membrane is based on a new triblock copolymer, is non-toxic, can be bio-eliminated, and has a degradation rate of more than 6 weeks for optimal anti-adhesion effect. We synthesized and characterized poly(ether urethane) (PEU) from poly(ethylene glycol). Triblock copolymers poly(lactic acid)-PEU-poly(lactic acid) (PLA-PEU-PLA) were then synthesized from PEU with PLA blocks of different lengths, and characterized. The membranes were shaped by hot molding and their mechanical properties, contact angle, water uptake, the kinetics of in vitro degradation and cytotoxicity were studied. Mechanical properties were developed according to the needs of orthopaedic surgeons. Results showed that membranes maintained their filmogenic integrity, have a degradation rate for optimal adhesion prevention, can be bioeliminated and biocompatible suggesting that they could be safely and effectively used as anti-adhesion orthopaedic devices. These results support the use of PLA-PEU-PLA membranes as a medical device, however, the effectiveness of the membranes in vivo needs to be further evaluated. A future study using an in vivo rat model of postoperative peritendinous adhesions is currently being developed.


Subject(s)
Biocompatible Materials/chemistry , Orthopedics , Polyesters/chemistry , Polyurethanes/chemistry , Tissue Adhesions/prevention & control , Animals , Biocompatible Materials/chemical synthesis , Cell Line , Hydrophobic and Hydrophilic Interactions , Mice , Molecular Structure , Particle Size , Surface Properties , Temperature
15.
J Minim Invasive Gynecol ; 28(7): 1384-1390, 2021 07.
Article in English | MEDLINE | ID: mdl-33152532

ABSTRACT

STUDY OBJECTIVE: To study the safety of a degradable polymeric film (DPF) and its efficacy on reducing the risk of intrauterine-adhesion (IUA) formation in a rat model. DESIGN: A series of case-control studies relying on random allocation, where feasible. SETTING: University and good practice animal laboratories. ANIMALS: The animal models comprised female and male Oncins France Strain A and female Wistar rats. INTERVENTION(S) AND MEASUREMENTS: The Oncins France Strain A rats were used for in vivo evaluation of the impact of the DPF on endometrial thickness and its effect on fertility. For in vivo evaluation of the biologic response, 40 Wistar rats were randomly allocated to intervention and control groups, with matched sampling time after surgery. Finally, for the in vivo evaluation of the DPF's efficacy on IUA prevention, a total of 24 Wistar rats were divided into 3 groups: 1 treated with the DPF, 1 treated with hyaluronic acid gel, and a sham group. MAIN RESULTS: The DPF did not have a significant impact on endometrial thickness, and there were no significant differences in the number of conceived or prematurely terminated pregnancies, confirming its noninferiority to no treatment. The DPF did not induce irritation at 5 days and 28 days. Finally, the DPF significantly reduced the likelihood of complete IUA formation compared with hyaluronic acid gel- and sham-implanted animals, where only 27% of the animals had their uterine cavity obliterated compared with 80% and 100%, respectively. CONCLUSION: The DPF is a safe film that is effective in preventing IUA formation after intrauterine curettage in rats.


Subject(s)
Uterine Diseases , Animals , Case-Control Studies , Female , Humans , Hyaluronic Acid , Male , Pregnancy , Rats , Rats, Wistar , Tissue Adhesions/prevention & control , Uterine Diseases/prevention & control
16.
Adv Colloid Interface Sci ; 283: 102213, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32739324

ABSTRACT

Double-hydrophilic block copolymers (DHBCs), consisting of at least two different water-soluble blocks, are an alternative to the classical amphiphilic block copolymers and have gained increasing attention in the field of biomedical applications. Although the chemical nature of the two blocks can be diverse, most classical DHBCs consist of a bioeliminable non-ionic block to promote solubilization in water, like poly(ethylene glycol), and a second block that is more generally a pH-responsive block capable of interacting with another ionic polymer or substrate. This second block is generally non-degradable and the presence of side chain functional groups raises the question of its fate and toxicity, which is a limitation in the frame of biomedical applications. In this review, following a first part dedicated to recent examples of non-degradable DHBCs, we focus on the DHBCs that combine a biocompatible and bioeliminable non-ionic block with a degradable functional block including polysaccharides, polypeptides, polyesters and other miscellaneous polymers. Their use to design efficient drug delivery systems for various biomedical applications through stimuli-dependent self-assembly is discussed along with the current challenges and future perspectives for this class of copolymers.


Subject(s)
Biocompatible Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Animals , Humans
17.
Chemistry ; 26(56): 12839-12845, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32516440

ABSTRACT

A simple and efficient way to synthesize peptide-containing silicone materials is described. Silicone oils containing a chosen ratio of bioactive peptide sequences were prepared by acid-catalyzed copolymerization of dichlorodimethylsilane, hybrid dichloromethyl peptidosilane, and Si(vinyl)- or SiH-functionalized monomers. Functionalized silicone oils were first obtained and then, after hydrosilylation cross-linking, bioactive polydimethylsiloxane (PDMS)-based materials were straightforwardly obtained. The introduction of an antibacterial peptide yielded PDMS materials showing activity against Staphylococcus aureus. PDMS containing RGD ligands showed improved cell-adhesion properties. This generic method was fully compatible with the stability of peptides and thus opened the way to the synthesis of a wide range of biologically active silicones.


Subject(s)
Dimethylpolysiloxanes , Cell Adhesion , Peptides , Polymerization , Silicone Oils
18.
Eur J Pharm Biopharm ; 152: 175-182, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32416135

ABSTRACT

Releasing a protein according to a zero-order profile without protein denaturation during the polymeric microparticle degradation process is very challenging. The aim of the current study was to develop protein-loaded microspheres with new PLGA based penta-block copolymers for a linear sustained protein release. Lysozyme was chosen as model protein and 40 µm microspheres were prepared using the solid-in-oil-in-water solvent extraction/evaporation process. Two types of PLGA-P188-PLGA penta-block copolymers were synthetized with two PLGA-segments molecular weight (20 kDa or 40 kDa). The resulting microspheres (50P20-MS and 50P40-MS) had the same size, an encapsulation efficiency around 50-60% but different porosities. Their protein release profiles were complementary: linear but non complete for 50P40-MS, non linear but complete for 50P20-MS. Two strategies, polymer blending and microsphere mixing, were considered to match the release to the desired profile. The (1:1) microsphere mixture was successful. It induced a bi-phasic release with a moderate initial burst (around 13%) followed by a nearly complete linear release for 8 weeks. This study highlighted the potential of this penta-block polymer where the PEO block mass ratio influence clearly the Tg and consequently the microsphere structure and the release behavior at 37 °C. The (1:1) mixture was a starting point but could be finely tuned to control the protein release.


Subject(s)
Polymers/chemistry , Proteins/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/economics , Microspheres , Muramidase , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity
19.
Mater Sci Eng C Mater Biol Appl ; 111: 110811, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32279824

ABSTRACT

Implants of poly(ether ether ketone) (PEEK) are gaining importance in surgical bone reconstruction of the skull. As with any implant material, PEEK is susceptible to bacterial contamination and occasionally PEEK implants were removed from patients because of infection. To address this problem, a combination of anti-fouling and bactericidal polymers is grafted onto PEEK. The originality is that anti-fouling (modified poly(ethylene glycol)) and bactericidal (quaternized poly(dimethylaminoethyl acrylate)) moieties are simultaneously and covalently grafted onto PEEK via UV photoinsertion. The functionalized PEEK surfaces are evaluated by water contact angle measurements, FTIR, XPS and AFM. Grafting of anti-fouling and bactericidal polymers significantly reduces Staphylococcus aureus adhesion on PEEK surfaces without exhibiting cytotoxicity in vitro. This study demonstrates that grafting combinations of anti-fouling and bactericidal polymers synergistically prevents bacterial adhesion on PEEK implants. This approach shows clinical relevance as grafting is rapid, does not modify PEEK properties and can be conducted on pre-formed implants.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofouling , Ketones/pharmacology , Light , Polyethylene Glycols/pharmacology , Animals , Benzophenones , Cell Death/drug effects , Cell Survival/drug effects , Escherichia coli/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Ketones/chemical synthesis , Ketones/chemistry , Microbial Sensitivity Tests , Photoelectron Spectroscopy , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polymers , Proton Magnetic Resonance Spectroscopy , Staphylococcus aureus/drug effects , Surface Properties
20.
Commun Biol ; 2: 196, 2019.
Article in English | MEDLINE | ID: mdl-31123719

ABSTRACT

Intrauterine adhesions lead to partial or complete obliteration of the uterine cavity and have life-changing consequences for women. The leading cause of adhesions is believed to be loss of stroma resulting from trauma to the endometrium after surgery. Adhesions are formed when lost stroma is replaced by fibrous tissue that join the uterine walls. Few effective intrauterine anti-adhesion barriers for gynecological surgery exist. We designed a degradable anti-adhesion medical device prototype to prevent adhesion formation and recurrence and restore uterine morphology. We focused on ideal degradation time for complete uterine re-epithelialization for optimal anti-adhesion effect and clinical usability. We developed a triblock copolymer prototype [poly(lactide) combined with high molecular mass poly(ethylene oxide)]. Comparative pre-clinical studies demonstrated in vivo anti-adhesion efficacy. Ease of introduction and optimal deployment in a human uterus confirmed clinical usability. This article provides preliminary data to develop an intrauterine medical device and conduct a clinical trial.


Subject(s)
Equipment Design , Tissue Adhesions/prevention & control , Uterine Diseases/metabolism , Uterus/pathology , Uterus/surgery , Adult , Animals , Cell Adhesion , Collagen , Endometrium/pathology , Female , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Polyesters/chemistry , Polyethylene Glycols/chemistry , Random Allocation , Rats , Rats, Wistar , Recurrence , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...