Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 891218, 2022.
Article in English | MEDLINE | ID: mdl-36338968

ABSTRACT

The last century has witnessed the introduction, establishment and expansion of mosquito-borne diseases into diverse new geographic ranges. Malaria is transmitted by female Anopheles mosquitoes. Despite making great strides over the past few decades in reducing the burden of malaria, transmission is now on the rise again, in part owing to the emergence of mosquito resistance to insecticides, antimalarial drug resistance and, more recently, the challenges of the COVID-19 pandemic, which resulted in the reduced implementation efficiency of various control programs. The utility of genetically engineered gene drive mosquitoes as tools to decrease the burden of malaria by controlling the disease-transmitting mosquitoes is being evaluated. To date, there has been remarkable progress in the development of CRISPR/Cas9-based homing endonuclease designs in malaria mosquitoes due to successful proof-of-principle and multigenerational experiments. In this review, we examine the lessons learnt from the development of current CRISPR/Cas9-based homing endonuclease gene drives, providing a framework for the development of gene drive systems for the targeted control of wild malaria-transmitting mosquito populations that overcome challenges such as with evolving drive-resistance. We also discuss the additional substantial works required to progress the development of gene drive systems from scientific discovery to further study and subsequent field application in endemic settings.

2.
PLoS Genet ; 18(6): e1010279, 2022 06.
Article in English | MEDLINE | ID: mdl-35727851

ABSTRACT

The sustainable control of many highly damaging insect crop pests and disease vectors is threatened by the evolution of insecticide resistance. As a consequence, strategies have been developed that aim to prevent or delay resistance development by rotating or mixing insecticides with different modes of action (MoA). However, these approaches can be compromised by the emergence of mechanisms that confer cross-resistance to insecticides with different MoA. Despite the applied importance of cross-resistance, its evolutionary underpinnings remain poorly understood. Here we reveal how a single gene evolved the capacity to detoxify two structurally unrelated insecticides with different MoA. Using transgenic approaches we demonstrate that a specific variant of the cytochrome P450 CYP6ER1, previously shown to confer resistance to the neonicotinoid imidacloprid in the brown planthopper, N. lugens, also confers cross-resistance to the phenylpyrazole ethiprole. CYP6ER1 is duplicated in resistant strains, and we show that while the acquisition of mutations in two encoded substrate recognition sites (SRS) of one of the parologs led to resistance to imidacloprid, a different set of mutations, outside of known SRS, are primarily responsible for resistance to ethiprole. Epistatic interactions between these mutations and their genetic background suggest that the evolution of dual resistance from the same gene copy involved functional trade-offs in respect to CYP6ER1 catalytic activity for ethiprole versus imidacloprid. Surprisingly, the mutations leading to ethiprole and imidacloprid resistance do not confer the ability to detoxify the insecticide fipronil, another phenylpyrazole with close structural similarity to ethiprole. Taken together, these findings reveal how gene duplication and divergence can lead to the evolution of multiple novel functions from a single gene. From an applied perspective they also demonstrate how cross-resistance to structurally unrelated insecticides can evolve, and illustrate the difficulty in predicting cross-resistance profiles mediated by metabolic mechanisms.


Subject(s)
Hemiptera , Insecticides , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Duplication , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/pharmacology
3.
PLoS Genet ; 17(10): e1009740, 2021 10.
Article in English | MEDLINE | ID: mdl-34610011

ABSTRACT

CRISPR-based homing gene drives can be designed to disrupt essential genes whilst biasing their own inheritance, leading to suppression of mosquito populations in the laboratory. This class of gene drives relies on CRISPR-Cas9 cleavage of a target sequence and copying ('homing') therein of the gene drive element from the homologous chromosome. However, target site mutations that are resistant to cleavage yet maintain the function of the essential gene are expected to be strongly selected for. Targeting functionally constrained regions where mutations are not easily tolerated should lower the probability of resistance. Evolutionary conservation at the sequence level is often a reliable indicator of functional constraint, though the actual level of underlying constraint between one conserved sequence and another can vary widely. Here we generated a novel adult lethal gene drive (ALGD) in the malaria vector Anopheles gambiae, targeting an ultra-conserved target site in a haplosufficient essential gene (AGAP029113) required during mosquito development, which fulfils many of the criteria for the target of a population suppression gene drive. We then designed a selection regime to experimentally assess the likelihood of generation and subsequent selection of gene drive resistant mutations at its target site. We simulated, in a caged population, a scenario where the gene drive was approaching fixation, where selection for resistance is expected to be strongest. Continuous sampling of the target locus revealed that a single, restorative, in-frame nucleotide substitution was selected. Our findings show that ultra-conservation alone need not be predictive of a site that is refractory to target site resistance. Our strategy to evaluate resistance in vivo could help to validate candidate gene drive targets for their resilience to resistance and help to improve predictions of the invasion dynamics of gene drives in field populations.


Subject(s)
CRISPR-Cas Systems/genetics , Conserved Sequence/genetics , Animals , Anopheles/genetics , Biological Evolution , Gene Drive Technology/methods , Genes, Essential/genetics , Genotype , Malaria/parasitology , Mosquito Control/methods , Mosquito Vectors/genetics
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: mdl-34050017

ABSTRACT

CRISPR-Cas9 nuclease-based gene drives have been developed toward the aim of control of the human malaria vector Anopheles gambiae Gene drives are based on an active source of Cas9 nuclease in the germline that promotes super-Mendelian inheritance of the transgene by homology-directed repair ("homing"). Understanding whether CRISPR-induced off-target mutations are generated in Anopheles mosquitoes is an important aspect of risk assessment before any potential field release of this technology. We compared the frequencies and the propensity of off-target events to occur in four different gene-drive strains, including a deliberately promiscuous set-up, using a nongermline restricted promoter for SpCas9 and a guide RNA with many closely related sites (two or more mismatches) across the mosquito genome. Under this scenario we observed off-target mutations at frequencies no greater than 1.42%. We witnessed no evidence that CRISPR-induced off-target mutations were able to accumulate (or drive) in a mosquito population, despite multiple generations' exposure to the CRISPR-Cas9 nuclease construct. Furthermore, judicious design of the guide RNA used for homing of the CRISPR construct, combined with tight temporal constriction of Cas9 expression to the germline, rendered off-target mutations undetectable. The findings of this study represent an important milestone for the understanding and managing of CRISPR-Cas9 specificity in mosquitoes, and demonstrates that CRISPR off-target editing in the context of a mosquito gene drive can be reduced to minimal levels.


Subject(s)
Anopheles/genetics , CRISPR-Cas Systems , Gene Editing , Genome, Insect , Malaria , Mosquito Vectors/genetics , Animals , Humans
5.
Pestic Biochem Physiol ; 169: 104674, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32828379

ABSTRACT

There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.


Subject(s)
Insecticide Resistance/drug effects , Insecticides/pharmacology , Animals , Animals, Genetically Modified , Bees , Cytochrome P-450 Enzyme System , Drosophila melanogaster/drug effects
6.
Curr Biol ; 28(2): 268-274.e5, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29337073

ABSTRACT

Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Evolution, Molecular , Gene Duplication , Hemiptera/genetics , Insecticide Resistance , Insecticides/pharmacology , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Animals , Gene Dosage , Hemiptera/drug effects
7.
Pestic Biochem Physiol ; 142: 1-8, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29107231

ABSTRACT

We discovered the A301S mutation in the RDL GABA-gated chloride channel of fiprole resistant rice brown planthopper, Nilaparvata lugens populations by DNA sequencing and SNP calling via RNASeq. Ethiprole selection of two field N. lugens populations resulted in strong resistance to both ethiprole and fipronil and resulted in fixation of the A301S mutation, as well as the emergence of another mutation, Q359E in one of the selected strains. To analyse the roles of these mutations in resistance to phenylpyrazoles, three Rdl constructs: wild type, A301S and A301S+Q359E were expressed in Xenopus laevis oocytes and assessed for their sensitivity to ethiprole and fipronil using two-electrode voltage-clamp electrophysiology. Neither of the mutant Rdl subtypes significantly reduced the antagonistic action of fipronil, however there was a significant reduction in response to ethiprole in the two mutated subtypes compared with the wild type. Bioassays with a Drosophila melanogaster strain carrying the A301S mutation showed strong resistance to ethiprole but not fipronil compared to a strain without this mutation, thus further supporting a causal role for the A301S mutation in resistance to ethiprole. Homology modelling of the N. lugens RDL channel did not suggest implications of Q359E for fiprole binding in contrast to A301S located in transmembrane domain M2 forming the channel pore. Synergist bioassays provided no evidence of a role for cytochrome P450s in N. lugens resistance to fipronil and the molecular basis of resistance to this compound remains unknown. In summary this study provides strong evidence that target-site resistance underlies widespread ethiprole resistance in N. lugens populations.


Subject(s)
Hemiptera/drug effects , Hemiptera/genetics , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Mutation, Missense , Receptors, GABA-A/genetics , Animals , Base Sequence , Hemiptera/metabolism , Insect Proteins/metabolism , Pyrazoles/pharmacology , Pyrethrins/pharmacology , Receptors, GABA-A/metabolism
8.
Insect Biochem Mol Biol ; 73: 62-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27117524

ABSTRACT

Spinosad, a widely used and economically important insecticide, targets the nicotinic acetylcholine receptor (nAChRs) of the insect nervous system. Several studies have associated loss of function mutations in the insect nAChR α6 subunit with resistance to spinosad, and in the process identified this particular subunit as the specific target site. More recently a single non-synonymous point mutation, that does not result in loss of function, was identified in spinosad resistant strains of three insect species that results in an amino acid substitution (G275E) of the nAChR α6 subunit. The causal role of this mutation has been called into question as, to date, functional evidence proving its involvement in resistance has been limited to the study of vertebrate receptors. Here we use the CRISPR/Cas9 gene editing platform to introduce the G275E mutation into the nAChR α6 subunit of Drosophila melanogaster. Reverse transcriptase-PCR and sequencing confirmed the presence of the mutation in Dα6 transcripts of mutant flies and verified that it does not disrupt the normal splicing of the two exons in close vicinity to the mutation site. A marked decrease in sensitivity to spinosad (66-fold) was observed in flies with the mutation compared to flies of the same genetic background minus the mutation, clearly demonstrating the functional role of this amino acid substitution in resistance to spinosad. Although the resistance levels observed are 4.7-fold lower than exhibited by a fly strain with a null mutation of Dα6, they are nevertheless predicated to be sufficient to result in resistance to spinosad at recommended field rates. Reciprocal crossings with susceptible fly strains followed by spinosad bioassays revealed G275E is inherited as an incompletely recessive trait, thus resembling the mode of inheritance described for this mutation in the western flower thrips, Frankliniella occidentalis. This study both resolves a debate on the functional significance of a target-site mutation and provides an example of how recent advances in genome editing can be harnessed to study insecticide resistance.


Subject(s)
CRISPR-Cas Systems , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Insecticide Resistance , Insecticides/pharmacology , Macrolides/pharmacology , Receptors, Nicotinic/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drug Combinations , Female , Point Mutation , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Sequence Alignment
9.
Pest Manag Sci ; 72(1): 140-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25612154

ABSTRACT

BACKGROUND: We report on the status of imidacloprid and ethiprole resistance in Nilaparvata lugens Stål collected from across South and East Asia over the period 2005-2012. RESULTS: A resistance survey found that field populations had developed up to 220-fold resistance to imidacloprid and 223-fold resistance to ethiprole, and that many of the strains collected showed high levels of resistance to both insecticides. We also found that the cytochrome P450 CYP6ER1 was significantly overexpressed in 12 imidacloprid-resistant populations tested when compared with a laboratory susceptible strain, with fold changes ranging from ten- to 90-fold. In contrast, another cytochrome P450 CYP6AY1, also implicated in imidacloprid resistance, was underexpressed in ten of the populations and only significantly overexpressed (3.5-fold) in a single population from India compared with the same susceptible strain. Further selection of two of the imidacloprid-resistant field strains correlated with an approximate threefold increase in expression of CYP6ER1. CONCLUSIONS: We conclude that overexpression of CYP6ER1 is associated with field-evolved resistance to imidacloprid in brown planthopper populations in five countries in South and East Asia.


Subject(s)
Hemiptera/drug effects , Imidazoles/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Nitro Compounds/pharmacology , Pyrazoles/pharmacology , Animals , Asia, Southeastern , Cytochrome P-450 Enzyme System/metabolism , Asia, Eastern , Female , Hemiptera/genetics , India , Neonicotinoids
SELECTION OF CITATIONS
SEARCH DETAIL
...