Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877860

ABSTRACT

The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.

2.
Curr Pharm Des ; 29(44): 3546-3562, 2023.
Article in English | MEDLINE | ID: mdl-38115614

ABSTRACT

Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Nanogels/chemistry , Nanogels/therapeutic use , Drug Delivery Systems/methods , Polymers/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/therapeutic use , Drug Carriers/chemistry , Neoplasms/drug therapy
4.
Biosensors (Basel) ; 13(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37185556

ABSTRACT

Breast cancer (BC), one of the most common and life-threatening cancers, has the highest incidence rate among women. Early diagnosis of BC oncomarkers is considered the most effective strategy for detecting and treating BC. Finding the type and stage of BC in women as soon as possible is one of the greatest ways to stop its incidence and negative effects on medical treatment. The development of biosensors for early, sensitive, and selective detection of oncomarkers has recently attracted much attention. An electrochemical nano biosensor (EN) is a very suitable option for a powerful tool for cancer diagnosis. This comprehensive review provides information about the prevalence and pathobiology of BC, recent advances in clinically available BC oncomarkers, and the most common electrochemical nano biosensors for point-of-care (POC) detection of various BC oncomarkers using nanomaterial-based signal amplification techniques.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Nanostructures , Humans , Female , Breast Neoplasms/diagnosis , Electrochemical Techniques , Biosensing Techniques/methods , Point-of-Care Systems
5.
Front Bioeng Biotechnol ; 11: 1104126, 2023.
Article in English | MEDLINE | ID: mdl-36911200

ABSTRACT

Hydrogels are widely used biomaterials in the delivery of therapeutic agents, including drugs, genes, proteins, etc., as well as tissue engineering, due to obvious properties such as biocompatibility and their similarity to natural body tissues. Some of these substances have the feature of injectability, which means that the substance is injected into the desired place in the solution state and then turns into the gel, which makes it possible to administer them from a way with a minimal amount of invasion and eliminate the need for surgery to implant pre-formed materials. Gelation can be caused by a stimulus and/or spontaneously. Suppose this induces due to the effect of one or many stimuli. In that case, the material in question is called stimuli-responsive because it responds to the surrounding conditions. In this context, we introduce the different stimuli that cause gelation and investigate the different mechanisms of the transformation of the solution into the gel in them. Also, we study special structures, such as nano gels or nanocomposite gels.

SELECTION OF CITATIONS
SEARCH DETAIL
...