Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(42): 17216, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37877894

ABSTRACT

Correction for 'Self-limiting stoichiometry in SnSe thin films' by Jonathan R. Chin et al., Nanoscale, 2023, 15, 9973-9984, https://doi.org/10.1039/D3NR00645J.

2.
Nanoscale ; 15(23): 9973-9984, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37272496

ABSTRACT

Unique functionalities can arise when 2D materials are scaled down near the monolayer limit. However, in 2D materials with strong van der Waals bonds between layers, such as SnSe, maintaining stoichiometry while limiting vertical growth is difficult. Here, we describe how self-limiting stoichiometry can promote the growth of SnSe thin films deposited by molecular beam epitaxy. The Pnma phase of SnSe was stabilized over a broad range of Sn : Se flux ratios from 1 : 1 to 1 : 5. Changing the flux ratio does not affect the film stoichiometry, but influences the predominant crystallographic orientation. ReaxFF molecular dynamics (MD) simulation demonstrates that, while a mixture of Sn/Se stoichiometries forms initially, SnSe stabilizes as the cluster size evolves. The MD results further show that the excess selenium coalesces into Se clusters that weakly interact with the surface of the SnSe particles, leading to the limited stoichiometric change. Raman spectroscopy corroborates this model showing the initial formation of SnSe2 transitioning into SnSe as experimental film growth progresses. Transmission electron microscopy measurements taken on films deposited with growth rates above 0.25 Å s-1 show a thin layer of SnSe2 that disrupts the crystallographic orientation of the SnSe films. Therefore, using the conditions for self-limiting SnSe growth while avoiding the formation of SnSe2 was found to increase the lateral scale of the SnSe layers. Overall, self-limiting stoichiometry provides a promising avenue for maintaining growth of large lateral-scale SnSe for device fabrication.


Subject(s)
Molecular Dynamics Simulation , Selenium , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
3.
ACS Appl Mater Interfaces ; 14(22): 25701-25709, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35608249

ABSTRACT

Magnetoelectric materials present a unique opportunity for electric field-controlled magnetism. Even though strain-mediated multiferroic heterostructures have shown unprecedented increase in magnetoelectric coupling compared to single-phase materials, further improvements must be made before ultra-low power memory, logic, magnetic sensors, and wide spectrum antennas can be realized. This work presents how magnetoelectric coupling can be enhanced by simultaneously exploiting multiple strain engineering approaches in heterostructures composed of Fe0.5Co0.5/Ag multilayers on (011) Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric crystals. When grown and measured under strain, these heterostructures exhibit an effective converse magnetoelectric coefficient in the order of 10-5 s m-1: the highest directly measured, non-resonant value to-date. This response occurred at room temperature and at low electric fields (<2 kV cm-1). This large effect is enabled by magnetization reorientation caused by changing the magnetic anisotropy with strain from the substrate and the use of multilayered magnetic materials to minimize the internal stress from deposition. Additionally, the coercive field dependence of the magnetoelectric response under strain suggests contributions from domain-mediated magnetization switching modified by voltage-induced magnetoelastic anisotropy. This work highlights how multicomponent strain engineering enables enhanced magnetoelectric coupling in heterostructures and provides an approach to realize energy-efficient magnetoelectric applications.

4.
Sci Adv ; 5(1): eaas9311, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30746434

ABSTRACT

Methylammonium lead iodide (MAPbI3) exhibits exceptional photovoltaic performance, but there remains substantial controversy over the existence and impact of ferroelectricity on the photovoltaic response. We confirm ferroelectricity in MAPbI3 single crystals and demonstrate mediation of the electronic response by ferroelectric domain engineering. The ferroelectric response sharply declines above 57°C, consistent with the tetragonal-to-cubic phase transition. Concurrent band excitation piezoresponse force microscopy-contact Kelvin probe force microscopy shows that the measured response is not dominated by spurious electrostatic interactions. Large signal poling (>16 V/cm) orients the permanent polarization into large domains, which show stabilization over weeks. X-ray photoemission spectroscopy results indicate a shift of 400 meV in the binding energy of the iodine core level peaks upon poling, which is reflected in the carrier concentration results from scanning microwave impedance microscopy. The ability to control the ferroelectric response provides routes to increase device stability and photovoltaic performance through domain engineering.

5.
Nat Commun ; 9(1): 2553, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959330

ABSTRACT

Hydrothermal synthesis is challenging in metal oxide systems with diverse polymorphism, as reaction products are often sensitive to subtle variations in synthesis parameters. This sensitivity is rooted in the non-equilibrium nature of low-temperature crystallization, where competition between different metastable phases can lead to complex multistage crystallization pathways. Here, we propose an ab initio framework to predict how particle size and solution composition influence polymorph stability during nucleation and growth. We validate this framework using in situ X-ray scattering, by monitoring how the hydrothermal synthesis of MnO2 proceeds through different crystallization pathways under varying solution potassium ion concentrations ([K+] = 0, 0.2, and 0.33 M). We find that our computed size-dependent phase diagrams qualitatively capture which metastable polymorphs appear, the order of their appearance, and their relative lifetimes. Our combined computational and experimental approach offers a rational and systematic paradigm for the aqueous synthesis of target metal oxides.

6.
Adv Mater ; 30(25): e1800559, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29744947

ABSTRACT

Many technologically critical materials are metastable under ambient conditions, yet the understanding of how to rationally design and guide the synthesis of these materials is limited. This work presents an integrated approach that targets a metastable lead-free piezoelectric polymorph of SrHfO3 . First-principles calculations predict that the previous experimentally unrealized, metastable P4mm phase of SrHfO3 should exhibit a direct piezoelectric response (d33 ) of 36.9 pC N-1 (compared to d33 = 0 for the ground state). Combining computationally optimized substrate selection and synthesis conditions lead to the epitaxial stabilization of the polar P4mm phase of SrHfO3 on SrTiO3 . The films are structurally consistent with the theory predictions. A ferroelectric-induced large signal effective converse piezoelectric response of 5.2 pm V-1 for a 35 nm film is observed, indicating the ability to predict and target multifunctionality. This illustrates a coupled theory-experimental approach to the discovery and realization of new multifunctional polymorphs.

7.
Ultramicroscopy ; 188: 48-51, 2018 05.
Article in English | MEDLINE | ID: mdl-29549789

ABSTRACT

Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.

8.
Sci Rep ; 7(1): 15232, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123137

ABSTRACT

Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO2 growth, contributing to the further development of this promising functional material.

SELECTION OF CITATIONS
SEARCH DETAIL
...