Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R571-R580, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35412389

ABSTRACT

Hyperglycemic conditions are prodromal to blood-brain barrier (BBB) impairment. The BBB comprises cerebral microvessel endothelial cells (CMECs) that are surrounded by astrocytic foot processes. Astrocytes express high levels of gap junction connexin 43 (Cx43), which play an important role in autocrine and paracrine signaling interactions that mediate gliovascular cross talk through secreted products. One of the key factors of the astrocytic "secretome" is vascular endothelial growth factor (VEGF), a potent angiogenic factor that can disrupt BBB integrity. We hypothesize that high-glucose conditions change the astrocytic expression of Cx43 and increase VEGF secretion leading to impairment of CMEC barrier properties in vitro and in vivo. Using coculture of neonatal rat astrocytes and CMEC, we mimic hyperglycemic conditions using high-glucose (HG) feeding media and show a significant decrease in Cx43 expression and the corresponding increase in secreted VEGF. This result was confirmed by the analyses of Cx43 and VEGF protein levels in the brain cortex samples from the type 2 diabetic rat (T2DN). To further characterize inducible changes in BBB, we measured transendothelial cell electrical resistance (TEER) and tight junction protein levels in cocultured conditioned astrocytes with isolated rat CMEC. The coculture monolayer's integrity and permeability were significantly compromised by HG media exposure, which was indicated by decreased TEER without a change in tight junction protein levels in CMEC. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross talk between astrocytes and CMEC, which could be one explanation for cerebral BBB disruption in diabetic conditions.


Subject(s)
Astrocytes , Endothelial Cells , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cells, Cultured , Coculture Techniques , Connexin 43/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , Microvessels/metabolism , Rats , Tight Junction Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
Brain Res ; 1732: 146702, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32032612

ABSTRACT

In the brain, glucose enters astrocytes through glucose transporter (GLUT1) and either enters glycolysis or the glycogen shunt. Astrocytes meet the energy needs of neurons by building up and breaking down their glycogen supply. High glucose exposure causes astrocyte dysregulation, but its effects on glucose metabolism are relatively unknown. We hypothesized that high glucose conditioning induces a glycogenic state in the astrocyte, resulting in an inefficient mobilization of substrates when challenged with glucose deprivation. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5 mM) vs. high glucose (HG, 25 mM) feeding media and measured cell membrane GLUT1 expression, glucose analog uptake, glycogen content, and cellular bioenergetics. This study demonstrates that HG conditioning causes increased glucose analog uptake (p < 0.05) without affecting GLUT1 membrane expression when compared to NG conditioned astrocytes. Increased glucose uptake in HG astrocytes is associated with higher baseline glycogen content compared to NG exposed astrocytes (p < 0.05). When challenged with glucose deprivation, HG astrocytes break down more than double the amount of glycogen molecules compared to NG astrocytes, although they break down a similar percentage of the starting glycogen stores (NG = 62%, HG = 55%). Additionally, HG conditioning negatively impacts astrocyte maximal respiration and glycolytic reserve capacity assessed by the Seahorse mitochondrial stress test and glycolytic stress test, respectively (p < 0.05). These results suggest that HG conditioning shifts astrocytes towards glycogen storage at baseline. Despite increased glycogen storage, HG astrocytes demonstrate decreased metabolic efficiency and capacity putting them at higher risk during extended periods of glucose deprivation.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Glycolysis/physiology , Animals , Astrocytes/drug effects , Brain/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Glucose/pharmacology , Glycolysis/drug effects , Rats , Rats, Sprague-Dawley
3.
Heliyon ; 5(5): e01795, 2019 May.
Article in English | MEDLINE | ID: mdl-31193586

ABSTRACT

Angiogenesis is a highly complex and coordinated process in the brain. Under normal conditions, it is a vital process in growth and development, but under adverse conditions such as diabetes mellitus, it can lead to severe pathology. Astrocytes are a key constituent of the neurovascular unit and contribute to cerebral function, not only bridging the gap between metabolic supplies from blood vessels to neurons, but also regulating angiogenesis. Astrocytes affect angiogenesis by secreting angiogenic factors such as vascular endothelial growth factor (VEGF) into its microenvironment and regulating mitogenic activity in cerebral microvessel endothelial cells (CMEC). We hypothesized that astrocytes conditioned in high glucose media would produce and secrete decreased VEGF which would lead to impaired proliferation, migration, and tube formation of CMEC in vitro. Using neonatal rat astrocytes, we used normal glucose (NG, 5.5mM) vs. high glucose (HG, 25mM) feeding media and measured VEGF message and protein levels as well as secreted VEGF. We co-cultured conditioned astrocytes with isolated rat CMEC and measured mitogenic activity of endothelial cells using BrdU assay, scratch recovery assay, and tube formation assay. HG astrocytes produced and secreted decreased VEGF protein and resulted in impaired mitogenic activity when co-cultured with CMEC as demonstrated by decreased BrdU uptake, decreased scratch recovery, and slower tube formation. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross-talk between astrocytes and CMEC which could be one explanation for cerebral microangiopathy seen in diabetic conditions.

4.
AJP Rep ; 6(1): e15-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26929863

ABSTRACT

Introduction Gastroschisis is considered to be an isolated abdominal wall defect that is infrequently associated with other anomalies. Case This case describes an infant with gastroschisis who developed refractory shock after an uncomplicated surgery for bowel atresia. He was found to have adrenal insufficiency secondary to septo-optic dysplasia with panhypopituitarism. Conclusion Gastroschisis and septo-optic dysplasia arise from vascular disruptions, therefore presence in the same infant can be more than just a coincidence. While this is not a common occurrence, our case illustrates the need for a high index of suspicion with an unusual clinical course.

SELECTION OF CITATIONS
SEARCH DETAIL
...