Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.843
Filter
1.
Cureus ; 16(6): e61977, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38983991

ABSTRACT

Isolated volar dislocation of the distal radioulnar joint is a rare occurrence and is commonly missed. The mechanism of injury typically involves hypersupination. True lateral radiographs are difficult to obtain as patients are usually limited with wrist pronation and supination, resulting in a high miss rate. We describe a 32-year-old male who presented to the emergency department (ED) with pain and swelling of the posteromedial aspect of the right wrist after punching a wall one hour prior to presentation. Examination revealed soft tissue tenderness and mild edema at the right distal ulna with an associated deformity, best visualized at the volar aspect of the right wrist. Active range of motion was limited with right wrist flexion and extension, secondary to pain and edema. Right wrist supination and pronation strength and range of motion were limited due to the patient's tenderness on examination. Peripheral nerve function and vascular examination were normal. Initial radiographs of the right hand, wrist, and forearm did not reveal a fracture or dislocation. A musculoskeletal computed tomography (CT) scan of the right hand and wrist revealed an avulsion fracture of the ulnar styloid with volar displacement of the ulna. Analgesia was achieved with an ultrasound-guided ulnar nerve block, and the right wrist was successfully reduced. This report highlights the difficulty in obtaining a diagnosis of an isolated volar dislocation of the distal radioulnar joint. We recommend obtaining a musculoskeletal CT scan in the setting of an inconclusive radiograph and incongruent physical examination. Analgesia can also be achieved with an ulnar nerve block under ultrasound guidance.

2.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949318

ABSTRACT

Following cSCI, activation of the DIAm can be impacted depending on the extent of the injury. The present manuscript describes a unilateral C2 hemisection (C2SH) model of cSCI that disrupts eupneic ipsilateral diaphragm (iDIAm) electromyographic (EMG) activity during breathing in rats. To evaluate recovery of DIAm motor control, the extent of deficit due to C2SH must first be clearly established. By verifying a complete initial loss of iDIAm EMG during breathing, subsequent recovery can be classified as either absent or present, and the extent of recovery can be estimated using the EMG amplitude. Additionally, by measuring the continued absence of iDIAm EMG activity during breathing after the acute spinal shock period following C2SH, the success of the initial C2SH may be validated. Measuring contralateral diaphragm (cDIAm) EMG activity can provide information about the compensatory effects of C2SH, which also reflects neuroplasticity. Moreover, DIAm EMG recordings from awake animals can provide vital physiological information about the motor control of the DIAm after C2SH. This article describes a method for a rigorous, reproducible, and reliable C2SH model of cSCI in rats, which is an excellent platform for studying respiratory neuroplasticity, compensatory cDIAm activity, and therapeutic strategies and pharmaceuticals.


Subject(s)
Diaphragm , Electromyography , Recovery of Function , Spinal Cord Injuries , Animals , Rats , Spinal Cord Injuries/physiopathology , Diaphragm/physiopathology , Electromyography/methods , Recovery of Function/physiology , Cervical Cord/injuries , Cervical Cord/physiopathology , Rats, Sprague-Dawley , Disease Models, Animal
3.
Drug Alcohol Rev ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38843090

ABSTRACT

INTRODUCTION: There is growing concern over the lack of regulation of alcohol advertisements on social media platforms frequented by youths. This study aims to build upon existing literature by assessing the frequency with which young Australians (17-25) are shown advertisements promoting alcohol use and the themes utilised in these advertisements. METHODS: A total of 125 Australian youths (mean age 18.74 years; 74.40% female) were recruited in exchange for course credit to participate in an online study. Participants scrolled through Facebook or Instagram for a period of 30 min and screenshotted any alcohol advertisements encountered. Participants then identified the advertisement qualities (or 'themes') present in the advertisements, based on pre-identified categories. Demographic, social media usage and historical personal, peer or familial substance use behaviour data was also collected. RESULTS: Seventy-one university students were exposed to 796 alcohol advertisements across both platforms, and they encountered an advertisement every 2 min and 43 s on average. Most advertisements included call to action features on both Facebook (78.80%) and Instagram (71.17%). Advertisements relating to ease of access (promoting subscription/home delivery; 41.72% and 42.56%) and sales incentives (special offers, promotions, samples or bonuses with purchase; 43.70% and 46.84%) were most common across both platforms. DISCUSSION AND CONCLUSIONS: Alcohol advertisements are highly prevalent online, particularly among Australian youth social media users. Future research should endeavour to identify whether temporal use of alcohol is a predictor of subsequent exposure to alcohol advertising on social media, and whether this exposure is likely to increase successive alcohol use behaviours.

4.
FASEB Bioadv ; 6(6): 159-176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846375

ABSTRACT

Succinate dehydrogenase (SDH) is a key mitochondrial enzyme involved in the tricarboxylic acid cycle, where it facilitates the oxidation of succinate to fumarate, and is coupled to the reduction of ubiquinone in the electron transport chain as Complex II. Previously, we developed a confocal-based quantitative histochemical technique to determine the maximum velocity of the SDH reaction (SDHmax) in single cells and observed that SDHmax corresponds with mitochondrial volume density. In addition, mitochondrial volume and motility varied within different compartments of human airway smooth muscle (hASM) cells. Therefore, we hypothesize that the SDH activity varies relative to the intracellular mitochondrial volume within hASM cells. Using 3D confocal imaging of labeled mitochondria and a concentric shell method for analysis, we quantified mitochondrial volume density, mitochondrial complexity index, and SDHmax relative to the distance from the nuclear membrane. The mitochondria within individual hASM cells were more filamentous in the immediate perinuclear region and were more fragmented in the distal parts of the cell. Within each shell, SDHmax also corresponded to mitochondrial volume density, where both peaked in the perinuclear region and decreased in more distal parts of the cell. Additionally, when normalized to mitochondrial volume, SDHmax was lower in the perinuclear region when compared to the distal parts of the cell. In summary, our results demonstrate that SDHmax measures differences in SDH activity within different cellular compartments. Importantly, our data indicate that mitochondria within individual cells are morphologically heterogeneous, and their distribution varies substantially within different cellular compartments, with distinct functional properties.

5.
Exp Gerontol ; 194: 112483, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38885913

ABSTRACT

Autophagy is a ubiquitous process through which damaged cytoplasmic structures are recycled and degraded within cells. Aging can affect autophagy regulation in different steps leading to the accumulation of damaged organelles and proteins, which can contribute to cell dysfunction and death. Motor neuron (MN) loss and sarcopenia are prominent features of neuromuscular aging. Previous studies on phrenic MNs showed increased levels of the autophagy proteins LC3 and p62 in 24 month compared to 6 month old mice, consistent with the onset of diaphragm muscle sarcopenia. In the present study, we hypothesized that aging leads to increased expression of the autophagy markers LC3 and p62 in single lumbar MNs. Expression of LC3 and p62 in lumbar MNs (spinal levels L1-L6) was assessed using immunofluorescence and confocal imaging of male and female mice at 6, 18 and 24 months of age, reflecting 100 %, 90 % and 75 % survival, respectively. A mixed linear model with animal as a random effect was used to compare relative LC3 and p62 expression in choline acetyl transferase-positive MNs across age groups. Expression of LC3 and p62 decreased in the white matter of the lumbar spinal cord with aging, with ~29 % decrease in LC3 and ~ 7 % decrease in p62 expression at 24 months of age compared to 6 months of age. There was no change in LC3 or p62 expression in the gray matter with age. LC3 expression in MNs relative to white matter increased significantly with age, with 150 % increase at 24 months of age compared to 6 months of age. Similarly, p62 expression in MNs relative to white matter increased significantly with age, with ~14 % increase at 24 months of age compared to 6 months of age. No effect of sex or MN pool was observed in LC3 and p62 expression in MNs. Overall, these data suggest autophagy impairment during elongation (increased LC3) and degradation (increased p62) phases with aging in lumbar MNs.

6.
Cryobiology ; 116: 104927, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857777

ABSTRACT

Victims of severe accidental hypothermia are frequently treated with catecholamines to counteract the hemodynamic instability associated with hypothermia-induced cardiac contractile dysfunction. However, we previously reported that the inotropic effects of epinephrine are diminished after hypothermia and rewarming (H/R) in an intact animal model. Thus, the goal of this study was to investigate the effects of Epi treatment on excitation-contraction coupling in isolated rat cardiomyocytes after H/R. In adult male rats, cardiomyocytes isolated from the left ventricle were electrically stimulated at 0.5 Hz and evoked cytosolic [Ca2+] and contractile responses (sarcomere length shortening) were measured. In initial experiments, the effects of varying concentrations of epinephrine on evoked cytosolic [Ca2+] and contractile responses at 37 °C were measured. In a second series of experiments, cardiomyocytes were cooled from 37 °C to 15 °C, maintained at 15 °C for 2 h, then rewarmed to 37 °C (H/R protocol). Immediately after rewarming, the effects of epinephrine treatment on evoked cytosolic [Ca2+] and contractile responses of cardiomyocytes were determined. At 37 °C, epinephrine treatment increased both cytosolic [Ca2+] and contractile responses of cardiomyocytes in a concentration-dependent manner peaking at 25-50 nM. The evoked contractile response of cardiomyocytes after H/R was reduced while the cytosolic [Ca2+] response was slightly elevated. The diminished contractile response of cardiomyocytes after H/R was not mitigated by epinephrine (25 nM) and epinephrine treatment reduced the exponential time decay constant (Tau), but did not increase the cytosolic [Ca2+] response. We conclude that epinephrine treatment does not mitigate H/R-induced contractile dysfunction in cardiomyocytes.

7.
J Appl Stat ; 51(8): 1609-1617, 2024.
Article in English | MEDLINE | ID: mdl-38863801

ABSTRACT

In this paper, we consider the estimation of intracluster correlation for ordinal data. We focus on pure-tone audiometry hearing threshold data, where thresholds are measured in 5 decibel increments. We estimate the intracluster correlation for tests from iPhone-based hearing assessment applications as a measure of test/retest reliability. We present a method to estimate the intracluster correlation using mixed effects cumulative logistic and probit models, which assume the outcome data are ordinal. This contrasts with using a mixed effects linear model which assumes that the outcome data are continuous. In simulation studies, we show that using a mixed effects linear model to estimate the intracluster correlation for ordinal data results in a negative finite sample bias, while using mixed effects cumulative logistic or probit models reduces this bias. The estimated intracluster correlation for the iPhone-based hearing assessment application is higher when using the mixed effects cumulative logistic and probit models compared to using a mixed effects linear model. When data are ordinal, using mixed effects cumulative logistic or probit models reduces the bias of intracluster correlation estimates relative to using a mixed effects linear model.

8.
Equine Vet J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924162

ABSTRACT

BACKGROUND: The survival of horses diagnosed with critical colic (requiring referral or euthanasia) relies on rapid and effective decision-making by the owner and veterinary practitioner. OBJECTIVES: To explore UK horse owners' and veterinary practitioners' experiences of decision-making for critical cases of equine colic. STUDY DESIGN: Qualitative study using a phenomenological approach. METHODS: Individual, semi-structured telephone interviews were conducted with 14 horse owners and 13 veterinary practitioners (vets) who had experienced a critical decision (referral or euthanasia) for a horse with colic. A purposive, convenience sample of participants was recruited. Sessions explored participant's experience of colic, including recognition, help-seeking behaviour, and challenges. Thematic analysis was performed on collected data. RESULTS: Four over-arching themes were identified; 'head', 'heart', 'practicalities' and 'impact'. Owners acknowledged responsibility for their horse's welfare but had different perspectives than vets on the importance of finance ('head'). Both vets and owners described how the horse-human relationship ('heart') often led to conflict during decision-making. The vet-client relationship was influential on decision-making for both owners and vets; involving other people in decision-making was described both positively and negatively by participants ('heart'). 'Practicalities', such as lack of preparedness, transport issues and adverse weather conditions, were identified by both owners and vets as barriers. Owners described a 'rollercoaster' of emotions after a critical decision, with profound impacts on their mental wellbeing, feelings of guilt, and long-term changes in behaviour ('impact'), and a lack of support to manage these feelings. MAIN LIMITATIONS: Small sample size. CONCLUSIONS: This study describes stakeholder decision-making during critical cases of equine colic. Factors that commonly influenced decisions included an owner's previous knowledge and beliefs, social pressures, logistics and the relationship between the owner and vet. The study highlighted long-term impacts on the owner, including their management and decisions for subsequent horses. These factors should be considered in shared decision-making.

10.
Chem Commun (Camb) ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828748

ABSTRACT

We demonstrate thermosalient behavior in anthracene-9-thiocarboxamide. Upon cooling, the crystalline material spontaneously fractures and jumps. Strong anisotropic thermal expansion precedes thermosalience, and the combination of hydrogen bonds and weaker interlayer interactions affords the macroscopic response. By incorporating structural moieties from different classes of thermosalient solids and using an underexplored supramolecular synthon, a dynamic, multi-functional material is achieved.

11.
Am J Clin Nutr ; 120(1): 153-161, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762185

ABSTRACT

BACKGROUND: High-sodium and low-potassium intakes are associated with a higher risk of hypertension and cardiovascular disease, but there are limited data on the circulating metabolomics profiles of 24-h urinary sodium and potassium excretions in free-living individuals. OBJECTIVES: We aimed to characterize the metabolomics signatures of a high-sodium and low-potassium diet in a cross-sectional study. METHODS: In 1028 healthy older adults from the Women's and Men's Lifestyle Validation Studies, we investigated the association of habitual sodium and potassium intakes measured by 2 to 4 24-h urine samples with plasma metabolites (quantified using liquid chromatography-tandem mass spectrometry) and metabolomic pathways. Our primary exposures were energy-adjusted 24-h urinary sodium excretion, potassium excretion, and sodium-to-potassium ratio, calculated based on energy expenditure derived from the doubly labeled water method. We then assessed the partial correlations of their metabolomics scores, derived from elastic net regressions, with cardiometabolic biomarkers. RESULTS: Higher sodium excretion was associated with 38 metabolites including higher piperine, phosphatidylethanolamine, and C5:1 carnitine. In pathway analysis, higher sodium excretion was associated with enhanced biotin and propanoate metabolism and enhanced degradation of lysine and branched-chain amino acids (BCAAs). Metabolites associated with higher potassium and lower sodium-to-potassium ratio included quinic acid and proline-betaine. After adjusting for confounding factors, the metabolomics score for sodium-to-potassium ratio positively correlated with fasting insulin (Spearman's rank correlation coefficient ρ = 0.27), C-peptide (ρ = 0.30), and triglyceride (ρ = 0.46), and negatively with adiponectin (ρ = -0.40), and high-density lipoprotein cholesterol (ρ = -0.42). CONCLUSIONS: We discovered metabolites and metabolomics pathways associated with a high-sodium diet, including metabolites related to biotin, propanoate, lysine, and BCAA pathways. The metabolomics signature for a higher sodium low-potassium diet is associated with multiple components of elevated cardiometabolic risk.


Subject(s)
Biomarkers , Metabolomics , Humans , Female , Cross-Sectional Studies , Male , Biomarkers/blood , Biomarkers/urine , Middle Aged , Aged , United States , Metabolomics/methods , Potassium/blood , Potassium/urine , Sodium, Dietary , Sodium/urine , Sodium/blood , Potassium, Dietary/administration & dosage , Metabolome , Cardiovascular Diseases/urine , Cardiovascular Diseases/blood
12.
J Am Heart Assoc ; 13(10): e034310, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38726910

ABSTRACT

BACKGROUND: Accurate quantification of sodium intake based on self-reported dietary assessments has been a persistent challenge. We aimed to apply machine-learning (ML) algorithms to predict 24-hour urinary sodium excretion from self-reported questionnaire information. METHODS AND RESULTS: We analyzed 3454 participants from the NHS (Nurses' Health Study), NHS-II (Nurses' Health Study II), and HPFS (Health Professionals Follow-Up Study), with repeated measures of 24-hour urinary sodium excretion over 1 year. We used an ensemble approach to predict averaged 24-hour urinary sodium excretion using 36 characteristics. The TOHP-I (Trial of Hypertension Prevention I) was used for the external validation. The final ML algorithms were applied to 167 920 nonhypertensive adults with 30-year follow-up to estimate confounder-adjusted hazard ratio (HR) of incident hypertension for predicted sodium. Averaged 24-hour urinary sodium excretion was better predicted and calibrated with ML compared with the food frequency questionnaire (Spearman correlation coefficient, 0.51 [95% CI, 0.49-0.54] with ML; 0.19 [95% CI, 0.16-0.23] with the food frequency questionnaire; 0.46 [95% CI, 0.42-0.50] in the TOHP-I). However, the prediction heavily depended on body size, and the prediction of energy-adjusted 24-hour sodium excretion was modestly better using ML. ML-predicted sodium was modestly more strongly associated than food frequency questionnaire-based sodium in the NHS-II (HR comparing Q5 versus Q1, 1.48 [95% CI, 1.40-1.56] with ML; 1.04 [95% CI, 0.99-1.08] with the food frequency questionnaire), but no material differences were observed in the NHS or HPFS. CONCLUSIONS: The present ML algorithm improved prediction of participants' absolute 24-hour urinary sodium excretion. The present algorithms may be a generalizable approach for predicting absolute sodium intake but do not substantially reduce the bias stemming from measurement error in disease associations.


Subject(s)
Hypertension , Machine Learning , Humans , Female , Male , Middle Aged , Adult , Hypertension/urine , Hypertension/diagnosis , Hypertension/physiopathology , Sodium/urine , Aged , Sodium, Dietary/urine , Algorithms , Predictive Value of Tests , Self Report , Time Factors , Reproducibility of Results , United States , Urinalysis/methods
13.
Harm Reduct J ; 21(1): 105, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811969

ABSTRACT

Australia prohibits the sale of nicotine-vaping products unless prescribed by medical practitioners. Significant policy reforms were announced on the 28th of November 2023 including a ban on single-use disposable vapes with and without nicotine, and the removal of the personal importation scheme. Despite stringent regulations, loopholes exist such that e-cigarette vendors are getting around it, and online markets provide a route to do so. We discuss strategies used by vendors to covertly market e-cigarettes online through social media. In this perspective, we highlight three proposed policies to strengthen social media regulations that may be feasible to implement. Our proposed strategies to regulate e-cigarette product listings on social media involve implementing robust age verification measures, enhancing the system for flagging and reporting prohibited content, and developing a more effective system to identify and flag content related to e-cigarettes.


Subject(s)
Advertising , Electronic Nicotine Delivery Systems , Social Media , Humans , Advertising/legislation & jurisprudence , Australia , Commerce/legislation & jurisprudence , Social Media/legislation & jurisprudence , Vaping/legislation & jurisprudence
14.
Front Physiol ; 15: 1411420, 2024.
Article in English | MEDLINE | ID: mdl-38808359

ABSTRACT

Introduction: Vasodilatation in response to NO is a fundamental response of the vasculature, and during aging, the vasculature is characterized by an increase in stiffness and decrease in sensitivity to NO mediated vasodilatation. Vascular tone is regulated by the activation of smooth muscle and nonmuscle (NM) myosin, which are regulated by the activities of myosin light chain kinase (MLCK) and MLC phosphatase. MLC phosphatase is a trimeric enzyme with a catalytic subunit, myosin targeting subunit (MYPT1) and 20 kDa subunit of unknown function. Alternative mRNA splicing produces LZ+/LZ- MYPT1 isoforms and the relative expression of LZ+/LZ- MYPT1 determines the sensitivity to NO mediated vasodilatation. This study tested the hypothesis that aging is associated with changes in LZ+ MYPT1 and NM myosin expression, which alter vascular reactivity. Methods: We determined MYPT1 and NM myosin expression, force and the sensitivity of both endothelial dependent and endothelial independent relaxation in tertiary mesenteric arteries of young (6mo) and elderly (24mo) Fischer344 rats. Results: The data demonstrate that aging is associated with a decrease in both the expression of NM myosin and force, but LZ+ MYPT expression and the sensitivity to both endothelial dependent and independent vasodilatation did not change. Further, smooth muscle cell hypertrophy increases the thickness of the medial layer of smooth muscle with aging. Discussion: The reduction of NM myosin may represent an aging associated compensatory mechanism to normalize the stiffness of resistance vessels in response to the increase in media thickness observed during aging.

15.
ACS Sens ; 9(4): 1622-1643, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38587931

ABSTRACT

Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.


Subject(s)
Luminescent Proteins , Metals , Humans , Metals/chemistry , Luminescent Proteins/chemistry , Animals , Calcium/analysis , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Ions/chemistry , Ions/analysis
16.
Am J Kidney Dis ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583757

ABSTRACT

RATIONALE & OBJECTIVE: Most previous studies of the relationship between urinary factors and kidney stone risk have either assumed a linear effect of urinary parameters on kidney stone risk or implemented arbitrary thresholds suggesting biologically implausible "all-or-nothing" effects. In addition, little is known about the hierarchy of effects of urinary factors on kidney stone risk. This study evaluated the independent associations between urine chemistries and kidney stone formation and examined their magnitude and shape. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: We analyzed 9,045 24-hour urine collections from 6,217 participants of the Health Professionals Follow-Up Study and Nurses' Health Studies I and II. EXPOSURE: Urine volume and pH, and concentrations of calcium, citrate, oxalate, potassium, magnesium, uric acid, phosphorus, and sodium. OUTCOME: Incident symptomatic kidney stones. ANALYTICAL APPROACH: Multivariable logistic regression analysis incorporating restricted cubic splines to explore potentially nonlinear relationships between urinary factors and the risk of forming a kidney stone. Optimal inflection point analysis was implemented for each factor, and dominance analysis was performed to establish the relative importance of each urinary factor. RESULTS: Each urinary factor was significantly associated with stone formation except for urine pH. Higher urinary levels of calcium, oxalate, phosphorus, and sodium were associated with a higher risk of stone formation whereas higher urine volume, uric acid, citrate, potassium, and magnesium were associated with a lower risk. The relationships were substantially linear for urine calcium, uric acid, and sodium. By contrast, the magnitudes of the relationships were modestly attenuated at levels above the inflection points for urine oxalate, citrate, volume, phosphorus, potassium, and magnesium. Dominance analysis identified 3 categories of factors' relative importance: higher (calcium, volume, and citrate), intermediate (oxalate, potassium, and magnesium), and lower (uric acid, phosphorus, and sodium). LIMITATIONS: Predominantly White participants, lack of information on stone composition. CONCLUSIONS: Urine chemistries have complex relationships and differential relative associations with the risk of kidney stone formation. PLAIN-LANGUAGE SUMMARY: Kidney stones are common and likely to recur. Certain urinary factors play a role in the development of stones, but their independent roles, relative importance, and shapes of association with stone formation are not well-characterized. We analyzed 24-hour urine collections from individuals with and without kidney stones. Stones were less likely in those with higher urine volume, citrate, potassium, magnesium, and uric acid and were more likely in those with higher calcium, oxalate, phosphorus, and sodium. The acidity of the urine was not related to stones. The urinary parameters showed different degrees of relative importance, with calcium, volume, and citrate being greatest. All parameters exhibited a linear or close-to-linear shape of association with stone formation.

17.
J Appl Physiol (1985) ; 136(5): 1113-1121, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511211

ABSTRACT

The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor. As a genetic knockout of BDNF leads to extensive MN loss and postnatal death within 1-2 days after birth, we tested the hypothesis that postnatal inhibition of BDNF/TrkB.FL signaling is important for postnatal phrenic MN (PhMN) survival. In the present study, we used a 1NMPP1-sensitive TrkBF616A mutant mouse to evaluate the effects of inhibition of TrkB kinase activity on phrenic MN (PhMN) numbers and diaphragm muscle (DIAm) fiber cross-sectional area (CSA). Pups were exposed to 1NMPP1 or vehicle (DMSO) from birth to 21 days old (weaning) via the mother's ingestion in the drinking water. Following weaning, the right phrenic nerve was exposed in the neck and the proximal end dipped in a rhodamine solution to retrogradely label PhMNs. After 24 h, the cervical spinal cord and DIAm were excised. Labeled PhMNs were imaged using confocal microscopy, whereas DIAm strips were frozen at ∼1.5× resting length, cryosectioned, and stained with hematoxylin and eosin to assess CSA. We observed an ∼34% reduction in PhMN numbers and increased primary dendrite numbers in 1NMPP1-treated TrkBF616A mice. The distribution of PhMN size (somal surface area) DIAm fiber cross-sectional areas did not differ. We conclude that survival of PhMNs during early postnatal development is sensitive to BDNF/TrkB.FL signaling.NEW & NOTEWORTHY During early postnatal development, BDNF/TrkB signaling promotes PhMN survival. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact PhMN size. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact the number or CSA of DIAm fibers.


Subject(s)
Brain-Derived Neurotrophic Factor , Motor Neurons , Phrenic Nerve , Receptor, trkB , Signal Transduction , Animals , Female , Male , Mice , Animals, Newborn , Brain-Derived Neurotrophic Factor/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Diaphragm/metabolism , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/physiology , Motor Neurons/drug effects , Phrenic Nerve/physiology , Phrenic Nerve/metabolism , Phrenic Nerve/drug effects , Pyrazoles , Pyrimidines , Receptor, trkB/metabolism , Signal Transduction/physiology
18.
Biol Open ; 13(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38511682

ABSTRACT

Several investigations in recent years have reported patterns of discontinuous, biphasic, loglinear variation in the metabolic allometry of aquatic animals. These putative shifts in pattern of allometry have been attributed to changes in the primary site for gas exchange from cutaneous to branchial as animals undergo ontogenetic changes in size, shape, and surface area. Because of the important implications of the earlier research with regard to both physiology and evolution, I re-examined data that purportedly support claims of discontinuous, biphasic allometry in oxygen consumption versus body size of American eels (Anguilla rostrata) and spiny lobsters (Sagmariasus verreauxi). I used ANCOVA to fit three different statistical models to each set of logarithmic transformations and then assessed the fits by Akaike's Information Criterion. The observations for both species were described better by a single straight line fitted to the full distribution than by a biphasic model. Eels, lobsters, and other aquatic animals undergo changes in shape and surface area as they grow, but such changes are not necessarily accompanied by changes in the pattern of metabolic allometry.


Subject(s)
Models, Statistical , Oxygen Consumption , Animals , Body Size , Oxygen Consumption/physiology
19.
Brain ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454550

ABSTRACT

Hearing difficulty (HD) is one of the major health burdens in older adults. While aging-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. We analyzed a large-scale HD genome-wide association study (GWAS; Ntotal = 501,825, 56% females) and GWAS data related to 3,935 brain imaging-derived phenotypes (IDPs) assessed in up to 33,224 individuals (52% females) using multiple magnetic resonance imaging modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable, Mendelian randomization, and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait colocalization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 IDPs in males, and 171 IDPs in the sex-combined analysis. The latent causal variable analysis showed that some of these genetic correlations could be due to cause-effect relationships. For seven correlations, the causal effects were also confirmed by the Mendelian randomization approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD, and HD→fluctuation amplitudes of node 46 in resting-state functional MRI dimensionality 100 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analysis identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a colocalization signal for the rs13026575 variant between HD, primary visual cortex volume, and SPTBN1 transcriptomic regulation in females. Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.

20.
Physiol Rep ; 12(5): e15973, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467570

ABSTRACT

Cervical spinal cord injury impacts ventilatory and non-ventilatory functions of the diaphragm muscle (DIAm) and contributes to clinical morbidity and mortality in the afflicted population. Periodically, integrated brainstem neural circuit activity drives the DIAm to generate a markedly augmented effort or sigh-which plays an important role in preventing atelectasis and thus maintaining lung function. Across species, the general pattern of DIAm efforts during a normal sigh is variable in amplitude and the extent of post-sigh "apnea" (i.e., the post-sigh inter-breath interval). This post-sigh inter-breath interval acts as a respiratory reset, following the interruption of regular respiratory rhythm by sigh. We examined the impact of upper cervical (C2 ) spinal cord hemisection (C2 SH) on the transdiaphragmatic pressure (Pdi ) generated during sighs and the post-sigh respiratory reset in rats. Sighs were identified in Pdi traces by their characteristic biphasic pattern. We found that C2 SH results in a reduction of Pdi during both eupnea and sighs, and a decrease in the immediate post-sigh breath interval. These results are consistent with partial removal of descending excitatory synaptic inputs to phrenic motor neurons that results from C2 SH. Following cervical spinal cord injury, a reduction in the amplitude of Pdi during sighs may compromise the maintenance of normal lung function.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Rats , Male , Animals , Rats, Sprague-Dawley , Respiration , Diaphragm/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...