Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Invest Dermatol ; 139(2): 412-421, 2019 02.
Article in English | MEDLINE | ID: mdl-30287285

ABSTRACT

PAR2 has been proposed to contribute to lesion formation and intense itch in atopic dermatitis. Here, we tested the ability of a cell-penetrating pepducin, PZ-235, to mitigate the potentially deleterious effects of PAR2 in models of atopic dermatitis. PZ-235 significantly inhibited PAR2-mediated expression of inflammatory factors NF-κB, TSLP, TNF-α, and differentiation marker K10 by 94%-98% (P < 0.001) in human keratinocytes and suppressed IL-4 and IL-13 by 68%-83% (P < 0.05) in mast cells. In delayed pepducin treatment models of oxazolone- and DNFB-induced dermatitis, PZ-235 significantly attenuated skin thickening by 43%-100% (P < 0.01) and leukocyte crusting by 57% (P < 0.05), and it inhibited ex vivo chemotaxis of leukocytes toward PAR2 agonists. Daily PZ-235 treatment of filaggrin-deficient mice exposed to dust mite allergens for 8 weeks significantly suppressed total leukocyte and T-cell infiltration by 50%-68%; epidermal thickness by 60%-77%; and skin thickening, scaling, excoriation, and total lesion severity score by 46%-56%. PZ-235 significantly reduced itching caused by wasp venom peptide degranulation of mast cells in mice by 51% (P < 0.05), which was comparable to the protective effects conferred by PAR2 deficiency. Taken together, these results suggest that a PAR2 pepducin may confer broad therapeutic benefits as a disease-modifying treatment for atopic dermatitis and itch.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Dermatitis, Atopic/drug therapy , Pruritus/drug therapy , Receptor, PAR-2/antagonists & inhibitors , Animals , Cell-Penetrating Peptides/therapeutic use , Dermatitis, Atopic/etiology , Dermatitis, Atopic/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Filaggrin Proteins , Humans , Keratinocytes , Male , Mice , Pruritus/etiology , Pruritus/pathology , Receptor, PAR-2/immunology , Receptor, PAR-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL