Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38787240

ABSTRACT

The infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated not only with the development of acute disease but also with long-term symptoms or post-acute sequelae of SARS-CoV-2 (PASC). Multiple lines of evidence support that some viral antigens and RNA can persist for up to 15 months in multiple organs in the body, often after apparent clearance from the upper respiratory system, possibly leading to the persistence of symptoms. Activation of the immune system to viral antigens is observed for a prolonged time, providing indirect evidence of the persistence of viral elements after acute infection. In the gastrointestinal tract, the persistence of some antigens could stimulate the immune system, shaping the local microbiota with potential systemic effects. All of these interactions need to be investigated, taking into account predisposing factors, multiplicity of pathogenic mechanisms, and stratifying populations of vulnerable individuals, particularly women, children, and immunocompromised individuals, where SARS-CoV-2 may present additional challenges.

2.
Front Immunol ; 14: 1148595, 2023.
Article in English | MEDLINE | ID: mdl-37520523

ABSTRACT

Introduction: The Coronavirus Disease 2019 (COVID-19) is mainly a respiratory syndrome that can affect multiple organ systems, causing a variety of symptoms. Among the most common and characteristic symptoms are deficits in smell and taste perception, which may last for weeks/months after COVID-19 diagnosis owing to mechanisms that are not fully elucidated. Methods: In order to identify the determinants of olfactory symptom persistence, we obtained olfactory mucosa (OM) from 21 subjects, grouped according to clinical criteria: i) with persistent olfactory symptoms; ii) with transient olfactory symptoms; iii) without olfactory symptoms; and iv) non-COVID-19 controls. Cells from the olfactory mucosa were harvested for transcriptome analyses. Results and discussion: RNA-Seq assays showed that gene expression levels are altered for a long time after infection. The expression profile of micro RNAs appeared significantly altered after infection, but no relationship with olfactory symptoms was found. On the other hand, patients with persistent olfactory deficits displayed increased levels of expression of genes involved in the inflammatory response and zinc homeostasis, suggesting an association with persistent or transient olfactory deficits in individuals who experienced SARS-CoV-2 infection.

3.
iScience ; 26(6): 106935, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37265584

ABSTRACT

As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-CoV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences. Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available. To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.

4.
Front Immunol ; 14: 1117464, 2023.
Article in English | MEDLINE | ID: mdl-37153597

ABSTRACT

Post-Acute Sequelae of Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2) infection, or Long COVID, is a prevailing second pandemic with nearly 100 million affected individuals globally and counting. We propose a visual description of the complexity of Long COVID and its pathogenesis that can be used by researchers, clinicians, and public health officials to guide the global effort toward an improved understanding of Long COVID and the eventual mechanism-based provision of care to afflicted patients. The proposed visualization or framework for Long COVID should be an evidence-based, dynamic, modular, and systems-level approach to the condition. Furthermore, with further research such a framework could establish the strength of the relationships between pre-existing conditions (or risk factors), biological mechanisms, and resulting clinical phenotypes and outcomes of Long COVID. Notwithstanding the significant contribution that disparities in access to care and social determinants of health have on outcomes and disease course of long COVID, our model focuses primarily on biological mechanisms. Accordingly, the proposed visualization sets out to guide scientific, clinical, and public health efforts to better understand and abrogate the health burden imposed by long COVID.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Public Health , Risk Factors
5.
Vaccine ; 41(20): 3171-3177, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37088603

ABSTRACT

The widespread outbreak of the monkeypox virus (MPXV) recognized in 2022 poses new challenges for public healthcare systems worldwide. With more than 86,000 people infected, there is concern that MPXV may become endemic outside of its original geographical area leading to repeated human spillover infections or continue to be spread person-to-person. Fortunately, classical public health measures (e.g., isolation, contact tracing and quarantine) and vaccination have blunted the spread of the virus, but cases are continuing to be reported in 28 countries in March 2023. We describe here the vaccines and drugs available for the prevention and treatment of MPXV infections. However, although their efficacy against monkeypox (mpox) has been established in animal models, little is known about their efficacy in the current outbreak setting. The continuing opportunity for transmission raises concerns about the potential for evolution of the virus and for expansion beyond the current risk groups. The priorities for action are clear: 1) more data on the efficacy of vaccines and drugs in infected humans must be gathered; 2) global collaborations are necessary to ensure that government authorities work with the private sector in developed and low and middle income countries (LMICs) to provide the availability of treatments and vaccines, especially in historically endemic/enzootic areas; 3) diagnostic and surveillance capacity must be increased to identify areas and populations where the virus is present and may seed resurgence; 4) those at high risk of severe outcomes (e.g., immunocompromised, untreated HIV, pregnant women, and inflammatory skin conditions) must be informed of the risk of infection and be protected from community transmission of MPXV; 5) engagement with the hardest hit communities in a non-stigmatizing way is needed to increase the understanding and acceptance of public health measures; and 6) repositories of monkeypox clinical samples, including blood, fluids, tissues and lesion material must be established for researchers. This MPXV outbreak is a warning that pandemic preparedness plans need additional coordination and resources. We must prepare for continuing transmission, resurgence, and repeated spillovers of MPXV.


Subject(s)
Mpox (monkeypox) , Vaccines , Pregnancy , Animals , Humans , Female , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Monkeypox virus , Vaccination , Disease Outbreaks/prevention & control
6.
BMC Microbiol ; 22(1): 85, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365094

ABSTRACT

BACKGROUND: Aminoacyl-phosphatidylglycerol (aaPG) synthases are bacterial enzymes that usually catalyze transfer of aminoacyl residues to the plasma membrane phospholipid phosphatidylglycerol (PG). The result is introduction of positive charges onto the cytoplasmic membrane, yielding reduced affinity towards cationic antimicrobial peptides, and increased resistance to acidic environments. Therefore, these enzymes represent an important defense mechanism for many pathogens, including Staphylococcus aureus and Mycobacterium tuberculosis (Mtb), which are known to encode for lysyl-(Lys)-PG synthase MprF and LysX, respectively. Here, we used a combination of bioinformatic, genetic and bacteriological methods to characterize a protein encoded by the Mtb genome, Rv1619, carrying a domain with high similarity to MprF-like domains, suggesting that this protein could be a new aaPG synthase family member. However, unlike homologous domains of MprF and LysX that are positioned in the cytoplasm, we predicted that the MprF-like domain in LysX2 is in the extracytoplasmic region. RESULTS: Using genetic fusions to the Escherichia coli proteins PhoA and LacZ of LysX2, we confirmed this unique membrane topology, as well as LysX and MprF as benchmarks. Expression of lysX2 in Mycobacterium smegmatis increased cell resistance to human ß-defensin 2 and sodium nitrite, enhanced cell viability and delayed biofilm formation in acidic pH environment. Remarkably, MtLysX2 significantly reduced the negative charge on the bacterial surface upon exposure to an acidic environment. Additionally, we found LysX2 orthologues in major human pathogens and in rapid-growing mycobacteria frequently associated with human infections, but not in environmental and non-pathogenic mycobacteria. CONCLUSIONS: Overall, our data suggest that LysX2 is a prototype of a new class within the MprF-like protein family that likely enhances survival of the pathogenic species through its catalytic domain which is exposed to the extracytoplasmic side of the cell membrane and is required to decrease the negative charge on the bacterial surface through a yet uncharacterized mechanism.


Subject(s)
Aminoacyltransferases , Mycobacterium tuberculosis , Aminoacyltransferases/chemistry , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Bacterial Proteins/metabolism , Humans , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism
8.
Front Immunol ; 12: 676669, 2021.
Article in English | MEDLINE | ID: mdl-34616391

ABSTRACT

Even with sustained use of antiretroviral therapy (ART), HIV-infected individuals have an increased risk of systemic comorbid conditions and oral pathologies, including opportunistic infections, oral mucosal inflammation, and gingival and periodontal diseases. The immune-mediated mechanisms that drive this increased risk, in the context of sustained viral suppression, are unclear. HIV infection, even when controlled, alters microbial communities contributing to a chronic low-grade inflammatory state that underlies these non-HIV co-morbidities. The higher prevalence of dental caries, and mucosal and periodontal inflammation reported in HIV-infected individuals on ART is often associated with differentially abundant oral microbial communities, possibly leading to a heightened susceptibility to inflammation. This mini-review highlights current gaps in knowledge regarding the microbe-mediated oral mucosal immunity with HIV infection while discussing opportunities for future research investigations and implementation of novel approaches to elucidate these gaps. Interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-infected individuals. More broadly, additional research is needed to bolster general models of microbiome-mediated chronic immune activation and aid the development of precise microbiota-targeted interventions to reverse or mitigate adverse outcomes.


Subject(s)
HIV Infections/immunology , Immunity, Mucosal , Microbiota , Mucous Membrane/immunology , Mucous Membrane/microbiology , Anti-HIV Agents/therapeutic use , Dental Caries/complications , HIV Infections/drug therapy , HIV Infections/virology , Humans
9.
Front Cell Infect Microbiol ; 11: 535352, 2021.
Article in English | MEDLINE | ID: mdl-34277460

ABSTRACT

Human beta-defensins (hBDs) are broad-spectrum antimicrobial peptides, secreted by epithelial cells of the skin and mucosae, and astrocytes, which we and others have shown to inhibit HIV-1 in primary CD4+ T cells. Although loss of CD4+ T cells contributes to mucosal immune dysfunction, macrophages are a major source of persistence and spread of HIV and also contribute to the development of various HIV-associated complications. We hypothesized that, besides T cells, hBDs could protect macrophages from HIV. Our data in primary human monocyte-derived macrophages (MDM) in vitro show that hBD2 and hBD3 inhibit HIV replication in a dose-dependent manner. We determined that hBD2 neither alters surface expression of HIV receptors nor induces expression of anti-HIV cytokines or beta-chemokines in MDM. Studies using a G-protein signaling antagonist in a single-cycle reporter virus system showed that hBD2 suppresses HIV at an early post-entry stage via G-protein coupled receptor (GPCR)-mediated signaling. We find that MDM express the shared chemokine-hBD receptors CCR2 and CCR6, albeit at variable levels among donors. However, cell surface expression analyses show that neither of these receptors is necessary for hBD2-mediated HIV inhibition, suggesting that hBD2 can signal via additional receptor(s). Our data also illustrate that hBD2 treatment was associated with increased expression of APOBEC3A and 3G antiretroviral restriction factors in MDM. These findings suggest that hBD2 inhibits HIV in MDM via more than one CCR thus adding to the potential of using ß-defensins in preventive and therapeutic approaches.


Subject(s)
HIV-1 , beta-Defensins , Cells, Cultured , Cytidine Deaminase , Humans , Macrophages , Proteins , Virus Replication
10.
J Virol ; 95(15): e0056021, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33980602

ABSTRACT

Currently, there are no approved drugs for the treatment of flavivirus infection. Accordingly, we tested the inhibitory effects of the novel θ-defensin retrocyclin-101 (RC-101) against flavivirus infection and investigated the mechanism underlying the potential inhibitory effects. First, RC-101 robustly inhibited both Japanese encephalitis virus (JEV) and Zika virus (ZIKV) infections. RC-101 exerted inhibitory effects on the entry and replication stages. Results also indicated that the nonstructural protein NS2B-NS3 serine protease might serve as a potential viral target. Furthermore, RC-101 inhibited protease activity at the micromolar level. We also demonstrated that with respect to the glycoprotein E protein of flavivirus, the DE loop of domain III (DIII), which is the receptor-binding domain of the E protein, might serve as another viral target of RC-101. Moreover, a JEV DE mutant exhibited resistance to RC-101, which was associated with deceased binding affinity of RC-101 to DIII. These findings provide a basis for the development of RC-101 as a potential candidate for the treatment of flavivirus infection. IMPORTANCE Retrocyclin is an artificially humanized circular θ-defensin peptide, containing 18 residues, previously reported to possess broad antimicrobial activity. In this study, we found that retrocyclin-101 inhibited flavivirus (ZIKV and JEV) infections. Retrocyclin-101 inhibited NS2B-NS3 serine protease activity, suggesting that the catalytic triad of the protease is the target. Moreover, retrocyclin-101 bound to the DE loop of the E protein of flavivirus, which prevented its entry.


Subject(s)
Antiviral Agents/pharmacology , Encephalitis, Japanese/drug therapy , Peptides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Zika Virus Infection/drug therapy , Animals , Chlorocebus aethiops , Cricetinae , Defensins/chemistry , Encephalitis Virus, Japanese/growth & development , Humans , Protein Domains/genetics , Vero Cells , Viral Envelope Proteins/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , Zika Virus/growth & development
11.
Pathogens ; 11(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35055955

ABSTRACT

CD4+ CCR6+ T cells are highly susceptible to HIV infection, and a high cytokine producing CCR6+ T cell subset is selectively lost during HIV infection. The CCR6 chemokine MIP-3α (CCL20) is produced at sites of infection in SIV animal models. Recently, we have shown that MIP-3α inhibits HIV replication. This inhibition of HIV infection is mediated by CCR6 signaling and eventuates in increased APOBEC3G expression. Since there are few existing reports on the role of MIP-3α in health or disease, we studied its production by PBMCs from HIV-seronegative and HIV+ subjects. We evaluated the ability of PBMCs to produce MIP-3α in response to antigen stimulation using cells obtained from two groups: one composed of HIV-seronegative subjects (n = 16) and the other composed of HIV+ subjects (n = 58), some asymptomatic and some with clinically defined AIDS. Antigens included fragment C of the tetanus toxin, Candida albicans, whole-inactivated HIV, and HIV p24. MIP-3α was detected by ELISA in tissue culture supernatants of antigen-stimulated PBMCs. MIP-3α production by antigen-stimulated PBMCs was readily measured for HIV-negative subjects and for HIV-seropositive asymptomatic subjects, but not for patients with AIDS. These results suggest that subversion of the MIP-3α-CCR6 axis by HIV during the course of infection contributes to the loss of immune function that eventually leads to AIDS.

13.
Drug Discov Today ; 24(5): 1139-1147, 2019 05.
Article in English | MEDLINE | ID: mdl-30885676

ABSTRACT

Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Infections/metabolism , Molecular Targeted Therapy , Animals , Anti-HIV Agents/therapeutic use , Drug Discovery , HIV Infections/drug therapy , Humans
14.
J Leukoc Biol ; 102(4): 1103-1113, 2017 10.
Article in English | MEDLINE | ID: mdl-28729359

ABSTRACT

Despite widespread use of annual influenza vaccines, seasonal influenza-associated deaths number in the thousands each year, in part because of exacerbating bacterial superinfections. Therefore, discovering additional therapeutic options would be a valuable aid to public health. Recently, TLR4 inhibition has emerged as a possible mechanism for protection against influenza-associated lethality and acute lung injury. Based on recent data showing that rhesus macaque θ-defensins could inhibit TLR4-dependent gene expression, we tested the hypothesis that a novel θ-defensin, retrocyclin (RC)-101, could disrupt TLR4-dependent signaling and protect against viral infection. In this study, RC-101, a variant of the humanized θ-defensin RC-1, blocked TLR4-mediated gene expression in mouse and human macrophages in response to LPS, targeting both MyD88- and TRIF-dependent pathways. In a cell-free assay, RC-101 neutralized the biologic activity of LPS at doses ranging from 0.5 to 50 EU/ml, consistent with data showing that RC-101 binds biotinylated LPS. The action of RC-101 was not limited to the TLR4 pathway because RC-101 treatment of macrophages also inhibited gene expression in response to a TLR2 agonist, Pam3CSK4, but failed to bind that biotinylated agonist. Mouse macrophages infected in vitro with mouse-adapted A/PR/8/34 influenza A virus (PR8) also produced lower levels of proinflammatory cytokine gene products in a TLR4-independent fashion when treated with RC-101. Finally, RC-101 decreased both the lethality and clinical severity associated with PR8 infection in mice. Cumulatively, our data demonstrate that RC-101 exhibits therapeutic potential for the mitigation of influenza-related morbidity and mortality, potentially acting through TLR-dependent and TLR-independent mechanisms.


Subject(s)
Defensins/immunology , Influenza A virus/immunology , Orthomyxoviridae Infections/immunology , Peptides/immunology , Signal Transduction/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology , Animals , Defensins/genetics , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Peptides/genetics , Signal Transduction/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
15.
Viruses ; 9(5)2017 05 16.
Article in English | MEDLINE | ID: mdl-28509877

ABSTRACT

Chemokine receptor type 6 (CCR6)⁺CD4⁺ T cells are preferentially infected and depleted during HIV disease progression, but are preserved in non-progressors. CCR6 is expressed on a heterogeneous population of memory CD4⁺ T cells that are critical to mucosal immunity. Preferential infection of these cells is associated, in part, with high surface expression of CCR5, CXCR4, and α4ß7. In addition, CCR6⁺CD4⁺ T cells harbor elevated levels of integrated viral DNA and high levels of proliferation markers. We have previously shown that the CCR6 ligands MIP-3α and human beta defensins inhibit HIV replication. The inhibition required CCR6 and the induction of APOBEC3G. Here, we further characterize the induction of apolipoprotein B mRNA editing enzyme (APOBEC3G) by human beta defensin 2. Human beta defensin 2 rapidly induces transcriptional induction of APOBEC3G that involves extracellular signal-regulated kinases 1/2 (ERK1/2) activation and the transcription factors NFATc2, NFATc1, and IRF4. We demonstrate that human beta defensin 2 selectively protects primary CCR6⁺CD4⁺ T cells infected with HIV-1. The selective protection of CCR6⁺CD4⁺ T cell subsets may be critical in maintaining mucosal immune function and preventing disease progression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/drug effects , Receptors, CCR6/immunology , beta-Defensins/antagonists & inhibitors , APOBEC-3G Deaminase/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Line , Chemokine CCL20/antagonists & inhibitors , DNA, Viral , Disease Progression , HIV Infections/virology , Humans , Interferon Regulatory Factors/metabolism , MAP Kinase Signaling System , NFATC Transcription Factors/metabolism , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Th17 Cells , Virus Integration , Virus Replication/drug effects
16.
Proc Natl Acad Sci U S A ; 113(46): 13168-13173, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799525

ABSTRACT

HIV-1 infection is associated with increased risk for B-cell lymphomas. How HIV infection promotes the development of lymphoma is unclear, but it may involve chronic B-cell activation, inflammation, and/or impaired immunity, possibly leading to a loss of control of oncogenic viruses and reduced tumor immunosurveillance. We hypothesized that HIV structural proteins may contribute to lymphomagenesis directly, because they can persist long term in lymph nodes in the absence of viral replication. The HIV-1 transgenic mouse Tg26 carries a noninfectious HIV-1 provirus lacking part of the gag-pol region, thus constituting a model for studying the effects of viral products in pathogenesis. Approximately 15% of Tg26 mice spontaneously develop leukemia/lymphoma. We investigated which viral proteins are associated with the development of leukemia/lymphoma in the Tg26 mouse model, and performed microarray analysis on RNA from spleen and lymph nodes to identify potential mechanisms of lymphomagenesis. Of the viral proteins examined, only expression of HIV-1 matrix protein p17 was associated with leukemia/lymphoma development and was highly expressed in bone marrow before disease. The tumor cells resembled pro-B cells, and were CD19+IgM-IgD-CD93+CD43+CD21-CD23-VpreB+CXCR4+ Consistent with the pro-B-cell stage of B-cell development, microarray analysis revealed enrichment of transcripts, including Rag1, Rag2, CD93, Vpreb1, Vpreb3, and Igll1 We confirmed RAG1 expression in Tg26 tumors, and hypothesized that HIV-1 matrix protein p17 may directly induce RAG1 in B cells. Stimulation of human activated B cells with p17 enhanced RAG1 expression in three of seven donors, suggesting that intracellular signaling by p17 may lead to genomic instability and transformation.


Subject(s)
HIV Antigens/genetics , Lymphoma, B-Cell/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , Animals , B-Lymphocytes/metabolism , Bone Marrow/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , HIV Antigens/metabolism , HIV-1/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Lymph Nodes/metabolism , Lymphoma, B-Cell/metabolism , Mice, Transgenic , gag Gene Products, Human Immunodeficiency Virus/metabolism
17.
J Virol ; 90(17): 7833-47, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27334595

ABSTRACT

UNLABELLED: Human immunodeficiency virus (HIV) infects and depletes CD4(+) T cells, but subsets of CD4(+) T cells vary in their susceptibility and permissiveness to infection. For example, HIV preferentially depletes interleukin-17 (IL-17)-producing T helper 17 (Th17) cells and T follicular helper (Tfh) cells. The preferential loss of Th17 cells during the acute phase of infection impairs the integrity of the gut mucosal barrier, which drives chronic immune activation-a key determinant of disease progression. The preferential loss of Th17 cells has been attributed to high CD4, CCR5, and CXCR4 expression. Here, we show that Th17 cells also exhibit heightened permissiveness to productive HIV infection. Primary human CD4(+) T cells were sorted, activated under Th17- or Th0-polarizing conditions and infected, and then analyzed by flow cytometry. Th17-polarizing cytokines increased HIV infection, and HIV infection was disproportionately higher among Th17 cells than among IL-17(-) or gamma interferon-positive (IFN-γ(+)) cells, even upon infection with a replication-defective HIV vector with a pseudotype envelope. Further, Th17-polarized cells produced more viral capsid protein. Our data also reveal that Th17-polarized cells have diminished expression of RNase A superfamily proteins, and we report for the first time that RNase 6 inhibits HIV. Thus, our findings link Th17 polarization to increased HIV replication. IMPORTANCE: Our study compares the intracellular replicative capacities of several different HIV isolates among different T cell subsets, providing a link between the differentiation of Th17 cells and HIV replication. Th17 cells are of key importance in mucosal integrity and in the immune response to certain pathogens. Based on our findings and the work of others, we propose a model in which HIV replication is favored by the intracellular environment of two CD4(+) T cell subsets that share several requirements for their differentiation: Th17 and Tfh cells. Characterizing cells that support high levels of viral replication (rather than becoming latently infected or undergoing cell death) informs the search for new therapeutics aimed at manipulating intracellular signaling pathways and/or transcriptional factors that affect HIV replication.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV/growth & development , Ribonuclease, Pancreatic/biosynthesis , Th17 Cells/immunology , Th17 Cells/virology , CD4-Positive T-Lymphocytes/enzymology , Cells, Cultured , Gene Expression Profiling , HIV/physiology , Humans , T-Lymphocyte Subsets/enzymology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Th17 Cells/enzymology , Virus Replication
18.
Int J Antimicrob Agents ; 47(4): 311-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27032748

ABSTRACT

AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/drug effects , Oligodeoxyribonucleotides/pharmacology , Virus Attachment/drug effects , Anti-HIV Agents/toxicity , Aptamers, Nucleotide , Cell Survival/drug effects , Cells, Cultured , HIV-1/physiology , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Oligodeoxyribonucleotides/toxicity
19.
Pathog Dis ; 74(2)2016 Mar.
Article in English | MEDLINE | ID: mdl-26656889

ABSTRACT

Increased levels of the proinflammatory cytokine IL-8 are detected in the sputum of patients with chronic obstructive pulmonary disease (COPD) and during the pathological pulmonary manifestations of HIV infection : To explore a potential interrelationship between smoking, highly active antiretroviral therapy (HAART) and HIV immune status, we collected sputum samples, along with complete pulmonary function tests from groups of HIV-infected women smokers who were either on or off HAART. Analysis of the patient's sputum for cell count along with quantitative measures of IL-8 was performed and correlated with concurrent assessment of pulmonary function test (PFT). We found that HIV-positive smokers had decreased measurements on PFT of the diffusing capacity of the lung for carbon monoxide (D(LCO)) compared to standard reference values that did not differ with HAART usage. HAART, when controlled for CD4, showed a suppressive effect on the levels of pro inflammatory cytokine IL-8 in sputum. We conclude that in the era of HAART, HIV along with concurrent tobacco smoking is associated with declines in PFT in HIV-infected women. The use of HAART in patients appears to mitigate the increases in IL-8 levels in relation to immune status based on CD4 count.


Subject(s)
Antiretroviral Therapy, Highly Active , HIV Infections/drug therapy , HIV Infections/metabolism , Interleukin-8/metabolism , Lung/metabolism , Smoking , CD4 Lymphocyte Count , Comorbidity , Female , HIV Infections/physiopathology , HIV Infections/virology , Humans , Inflammation Mediators/metabolism , Lung/physiopathology , Male , Respiratory Function Tests , Risk Factors , Sex Factors , Viral Load
20.
Pathog Dis ; 73(8): ftv062, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26333571

ABSTRACT

Lymphangiogenesis and concurrent angiogenesis are essential in supporting proliferation and survival of AIDS-related lymphomas, which are often metastatic. In vitro studies suggest a candidate angiogienic and lymphangiogenic factor encoded by HIV: the matrix protein p17. p17 accumulates in lymph nodes of patients even when they are undergoing highly active antiretroviral therapy. p17 has been found to affect immune cells, and recent data showed that a variant p17, called S75X, induces cell growth by triggering MAPK/ERK and PI3K/AKT pathways. We tested the in vivo angiogenic activity of p17 by injecting it in Matrigel plugs in nude mice. Plugs were retrieved 7 days after injection, and assessed macroscopically, and by light and confocal microscopy. Our data revealed that both reference and S75X variant p17 promote angiogenesis and lymphangiogenesis in vivo. Our results suggest that the induction of angiogenesis and lymphangiogenesis by HIV-1 p17 may generate a favorable microenvironment that could trigger tumor growth and maintenance. Moreover, the presence of adipocytes infiltration observed at the histological level suggests a possible interplay between angiogenesis, lymphangiogenesis and adipogenesis. These findings offer new opportunities for the development of treatment strategies to combat HIV-related cancers.


Subject(s)
Adipogenesis/drug effects , HIV Antigens/metabolism , HIV-1/physiology , Lymphangiogenesis/drug effects , Neovascularization, Pathologic/chemically induced , gag Gene Products, Human Immunodeficiency Virus/metabolism , Animals , HIV Antigens/administration & dosage , Mice, Nude , Microscopy , gag Gene Products, Human Immunodeficiency Virus/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...