Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Eur J Neurosci ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733283

ABSTRACT

Previous studies have reported sex differences in cortical gyrification. Since most cortical folding is principally defined in utero, sex chromosomes as well as gonadal hormones are likely to influence sex-specific aspects of local gyrification. Classic congenital adrenal hyperplasia (CAH) causes high levels of androgens during gestation in females, whereas levels in males are largely within the typical male range. Therefore, CAH provides an opportunity to study the possible effects of prenatal androgens on cortical gyrification. Here, we examined the vertex-wise absolute mean curvature-a common estimate for cortical gyrification-in individuals with CAH (33 women and 20 men) and pair-wise matched controls (33 women and 20 men). There was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex in five cortical regions, where gyrification was increased in women compared to men. These regions were located on the lateral surface of the brain, specifically left middle frontal (rostral and caudal), right inferior frontal, left inferior parietal, and right occipital. There was no cortical region where gyrification was increased in men compared to women. Our findings do not only confirm prior reports of increased cortical gyrification in female brains but also suggest that cortical gyrification is not significantly affected by prenatal androgen exposure. Instead, cortical gyrification might be determined by sex chromosomes either directly or indirectly-the latter potentially by affecting the underlying architecture of the cortex or the size of the intracranial cavity, which is smaller in women.

2.
NPJ Parkinsons Dis ; 10(1): 91, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671017

ABSTRACT

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established therapy in advanced Parkinson's disease (PD). Motor and non-motor outcomes, however, show considerable inter-individual variability. Preoperative morphometry-based metrics have recently received increasing attention to explain treatment effects. As evidence for the prediction of non-motor outcomes is limited, we sought to investigate the association between metrics of voxel-based morphometry and short-term non-motor outcomes following STN-DBS in this prospective open-label study. Forty-nine PD patients underwent structural MRI and a comprehensive clinical assessment at preoperative baseline and 6-month follow-up. Voxel-based morphometry was used to assess associations between cerebral volume and non-motor outcomes corrected for multiple comparisons using a permutation-based approach. We replicated existing results associating volume loss of the superior frontal cortex with subpar motor outcomes. Overall non-motor burden, however, was not significantly associated with morphometric features, limiting its use as a marker to inform patient selection and holistic preoperative counselling.

3.
Psychiatry Res Neuroimaging ; 340: 111808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492542

ABSTRACT

Borderline personality disorder (BPD) is characterised by structural and functional brain alterations. Yet, there is little data on functional connectivity (FC) across different levels of brain networks and parameters. In this study, we applied a multi-level approach to analyse abnormal functional connectivity. We analysed resting-state functional magnetic resonance imaging (fMRI) data sets of 69 subjects: 17 female BPD patients and 51 age-matched psychiatrically healthy female controls. fMRI was analysed using CONN toolbox including: a) seed-based FC analysis of amygdala connectivity, b) independent component analysis (ICA) based network analysis of intra- and inter-network FC of selected resting-state networks (DMN, SN, FPN), as well as c) graph-theory based measures of network-level characteristics. We show group-level seed FC differences with higher amygdala to contralateral (superior) occipital cortex connectivity in BPD, which correlated with schema-therapy derived measures of symptoms/traits across the entire cohort. While there was no significant group effect on DMN, SN, or FPN intra-network or inter-network FC, we show a significant group difference for local efficiency and cluster coefficient for a DMN-linked cerebellum cluster. Our findings demonstrate BPD-linked changes in FC across multiple levels of observation, which supports a multi-level analysis for future studies to consider different aspects of functional connectome alterations.


Subject(s)
Borderline Personality Disorder , Connectome , Humans , Female , Borderline Personality Disorder/diagnostic imaging , Brain , Amygdala/diagnostic imaging , Connectome/methods , Occipital Lobe
4.
J Psychiatr Res ; 172: 136-143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382237

ABSTRACT

Subanesthetic doses of ketamine induce an antidepressant effect within hours in individuals with treatment-resistant depression while it furthermore induces immediate but transient psychotomimetic effects. Among these psychotomimetic effects, an altered sense of self has specifically been associated with the antidepressant response to ketamine as well as psychedelics. However, there is plenty of variation in the extent of the drug-induced altered sense of self experience that might be explained by differences in basal morphological characteristics, such as cortical thickness. Regions that have been previously associated with a psychedelics-induced sense of self and with ketamine's mechanism of action, are the posterior cingulate cortex (PCC) and the pregenual anterior cingulate cortex (pgACC). In this randomized, placebo-controlled, double-blind cross-over magnetic resonance imaging study, thirty-five healthy male participants (mean age ± standard deviation (SD) = 25.1 ± 4.2 years) were scanned at 7 T. We investigated whether the cortical thickness of two DMN regions, the PCC and the pgACC, are associated with disembodiment and experience of unity scores, which were used to index the ketamine-induced altered sense of self. We observed a negative correlation between the PCC cortical thickness and the disembodiment scores (R = -0.54, p < 0.001). In contrast, no significant association was found between the pgACC cortical thickness and the ketamine-induced altered sense of self. In the context of the existing literature, our findings highlight the importance of the PCC as a structure involved in the mechanism of ketamine-induced altered sense of self that seems to be shared with different antidepressant agents with psychotomimetic effects operating on different classes of transmitter systems.


Subject(s)
Hallucinogens , Ketamine , Humans , Male , Antidepressive Agents/adverse effects , Gyrus Cinguli/diagnostic imaging , Ketamine/adverse effects , Magnetic Resonance Imaging , Young Adult , Adult
5.
Hum Brain Mapp ; 45(3): e26632, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38379519

ABSTRACT

Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.


Subject(s)
Alzheimer Disease , Schizophrenia , Humans , Workflow , Brain/diagnostic imaging , Brain/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Machine Learning , Magnetic Resonance Imaging/methods
6.
Eur Radiol ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189981

ABSTRACT

OBJECTIVES: This study investigates the influence of normal cohort (NC) size and the impact of different NCs on automated MRI-based brain atrophy estimation. METHODS: A pooled NC of 3945 subjects (NCpool) was retrospectively created from five publicly available cohorts. Voxel-wise gray matter volume atrophy maps were calculated for 48 Alzheimer's disease (AD) patients (55-82 years) using veganbagel and dynamic normal templates with an increasing number of healthy subjects randomly drawn from NCpool (initially three, and finally 100 subjects). Over 100 repeats of the process, the mean over a voxel-wise standard deviation of gray matter z-scores was established and plotted against the number of subjects in the templates. The knee point of these curves was defined as the minimum number of subjects required for consistent brain atrophy estimation. Atrophy maps were calculated using each NC for AD patients and matched healthy controls (HC). Two readers rated the extent of mesiotemporal atrophy to discriminate AD/HC. RESULTS: The maximum knee point was at 15 subjects. For 21 AD/21 HC, a sufficient number of subjects were available in each NC for validation. Readers agreed on the AD diagnosis in all cases (Kappa for the extent of atrophy, 0.98). No differences in diagnoses between NCs were observed (intraclass correlation coefficient, 0.91; Cochran's Q, p = 0.19). CONCLUSION: At least 15 subjects should be included in age- and sex-specific normal templates for consistent brain atrophy estimation. In the study's context, qualitative interpretation of regional atrophy allows reliable AD diagnosis with a high inter-reader agreement, irrespective of the NC used. CLINICAL RELEVANCE STATEMENT: The influence of normal cohorts (NCs) on automated brain atrophy estimation, typically comparing individual scans to NCs, remains largely unexplored. Our study establishes the minimum number of NC-subjects needed and demonstrates minimal impact of different NCs on regional atrophy estimation. KEY POINTS: • Software-based brain atrophy estimation often relies on normal cohorts for comparisons. • At least 15 subjects must be included in an age- and sex-specific normal cohort. • Using different normal cohorts does not influence regional atrophy estimation.

7.
Brain Behav Immun ; 116: 175-184, 2024 02.
Article in English | MEDLINE | ID: mdl-38036270

ABSTRACT

As the heterogeneity of symptoms is increasingly recognized among long-COVID patients, it appears highly relevant to study potential pathophysiological differences along the different subtypes. Preliminary evidence suggests distinct alterations in brain structure and systemic inflammatory patterns in specific groups of long-COVID patients. To this end, we analyzed differences in cortical thickness and peripheral immune signature between clinical subgroups based on 3 T-MRI scans and signature inflammatory markers in n = 120 participants comprising healthy never-infected controls (n = 30), healthy COVID-19 survivors (n = 29), and subgroups of long-COVID patients with (n = 26) and without (n = 35) cognitive impairment according to screening with Montreal Cognitive Assessment. Whole-brain comparison of cortical thickness between the 4 groups was conducted by surface-based morphometry. We identified distinct cortical areas showing a progressive increase in cortical thickness across different groups, starting from healthy individuals who had never been infected with COVID-19, followed by healthy COVID-19 survivors, long-COVID patients without cognitive deficits (MoCA ≥ 26), and finally, long-COVID patients exhibiting significant cognitive deficits (MoCA < 26). These findings highlight the continuum of cortical thickness alterations associated with COVID-19, with more pronounced changes observed in individuals experiencing cognitive impairment (p < 0.05, FWE-corrected). Affected cortical regions covered prefrontal and temporal gyri, insula, posterior cingulate, parahippocampal gyrus, and parietal areas. Additionally, we discovered a distinct immunophenotype, with elevated levels of IL-10, IFNγ, and sTREM2 in long-COVID patients, especially in the group suffering from cognitive impairment. We demonstrate lingering cortical and immunological alterations in healthy and impaired subgroups of COVID-19 survivors. This implies a complex underlying pathomechanism in long-COVID and emphasizes the necessity to investigate the whole spectrum of post-COVID biology to determine targeted treatment strategies targeting specific sub-groups.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Cerebral Cortex/diagnostic imaging , Post-Acute COVID-19 Syndrome , COVID-19/complications , Brain/diagnostic imaging , Magnetic Resonance Imaging
8.
Sci Rep ; 13(1): 22056, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086999

ABSTRACT

In this randomized controlled intervention trial, we investigated whether intense visual stimulation through television watching can enhance visual information processing and motor learning performance. 74 healthy young adults were trained in a motor skill with visual information processing demands while being accommodated in a controlled environment for five days. The experimental manipulation (n = 37) consisted of prolonged television watching (i.e., 8 h/day, + 62.5% on average) to induce intense exposure to visual stimulation. The control group (n = 37) did not consume visual media. The groups were compared by motor learning performance throughout the study as well as pre/post visual attention parameters and resting-state network connectivity in functional MRI. We found that the intervention group performed significantly better in the motor learning task (+ 8.21% (95%-CI[12.04, 4.31], t(70) = 4.23, p < 0.001) while showing an increased capacity of visual short-term memory (+ 0.254, t(58) = - 3.19, p = 0.002) and increased connectivity between visual and motor-learning associated resting-state networks. Our findings suggest that the human brain might enter a state of accentuated visuomotor integration to support the implementation of motor learning with visual information processing demands if challenged by ample input of visual stimulation. Further investigation is needed to evaluate the persistence of this effect regarding participants exposed to accustomed amounts of visual media consumption.Clinical Trials Registration: This trial was registered in the German Clinical Trials Register/Deutsches Register klinischer Studien (DRKS): DRKS00019955.


Subject(s)
Brain , Learning , Young Adult , Humans , Photic Stimulation , Learning/physiology , Brain/physiology , Memory, Short-Term , Brain Mapping , Motor Skills/physiology
9.
Sci Rep ; 13(1): 21552, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057419

ABSTRACT

Rhythm and motor function are intrinsically linked to each other and to music, but the rhythm-motor interplay during music training, and the corresponding brain mechanisms, are underexplored. In a longitudinal training study with children, we examined the role of rhythm predisposition in the fine motor improvements arising from music training, and which brain regions would be implicated. Fifty-seven 8-year-olds were assigned to either a 6-month music training (n = 21), sports training (n = 18), or a control group (n = 18). They performed rhythm and motor tasks, and structural brain scans before and after training were collected. Better ability to perceive rhythm before training was related to less gray matter volume in regions of the cerebellum, fusiform gyrus, supramarginal gyrus, ventral diencephalon, amygdala, and inferior/middle temporal gyri. Music training improved motor performance, and greater improvements correlated with better pre-training rhythm discrimination. Music training also induced a loss of gray matter volume in the left cerebellum and fusiform gyrus, and volume loss correlated with higher motor gains. No such effects were found in the sports and control groups. In summary, children with finer-tuned rhythm perception abilities were prone to finer motor improvements through music training, and this rhythm-motor link was to some extent subserved by the left cerebellum and fusiform gyrus. These findings have implications for models on music-related plasticity and rhythm cognition, and for programs targeting motor function.


Subject(s)
Music , Child , Humans , Individuality , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Perception , Magnetic Resonance Imaging
10.
Front Psychiatry ; 14: 1266770, 2023.
Article in English | MEDLINE | ID: mdl-38025412

ABSTRACT

Background: Cocaine use disorder (CUD) is a global health issue with severe behavioral and cognitive sequelae. While previous evidence suggests a variety of structural and age-related brain changes in CUD, the impact on both, cortical thickness and brain age measures remains unclear. Methods: Derived from a publicly available data set (SUDMEX_CONN), 74 CUD patients and 62 matched healthy controls underwent brain MRI and behavioral-clinical assessment. We determined cortical thickness by surface-based morphometry using CAT12 and Brain Age Gap Estimate (BrainAGE) via relevance vector regression. Associations between structural brain changes and behavioral-clinical variables of patients with CUD were investigated by correlation analyses. Results: We found significantly lower cortical thickness in bilateral prefrontal cortices, posterior cingulate cortices, and the temporoparietal junction and significantly increased BrainAGE in patients with CUD [mean (SD) = 1.97 (±3.53)] compared to healthy controls (p < 0.001, Cohen's d = 0.58). Increased BrainAGE was associated with longer cocaine abuse duration. Conclusion: Results demonstrate structural brain abnormalities in CUD, particularly lower cortical thickness in association cortices and dose-dependent, increased brain age.

11.
Front Aging Neurosci ; 15: 1287304, 2023.
Article in English | MEDLINE | ID: mdl-38020770

ABSTRACT

Objectives: Previous research has found an association of low bone mineral density (BMD) and regional gray matter (GM) volume loss in Alzheimer's disease (AD). We were interested whether BMD is associated with GM volume decrease in brains of a healthy elderly population from the UK Biobank. Materials and methods: T1-weighted images from 5,518 women (MAge = 70.20, SD = 3.54; age range: 65-82 years) and 7,595 men (MAge = 70.84, SD = 3.68; age range: 65-82 years) without neurological or psychiatric impairments were included in voxel-based morphometry (VBM) analysis in CAT12 with threshold-free-cluster-enhancement (TFCE) across the whole brain. Results: We found a significant decrease of GM volume in women in the superior frontal gyri, middle temporal gyri, fusiform gyri, temporal poles, cingulate gyri, precunei, right parahippocampal gyrus and right hippocampus, right ventral diencephalon, and right pre- and postcentral gyrus. Only small effects were found in men in subcallosal area, left basal forebrain and entorhinal area. Conclusion: BMD is associated with low GM volume in women but less in men in regions afflicted in the early-stages of AD even in a sample without neurodegenerative diseases.

12.
Front Aging Neurosci ; 15: 1254194, 2023.
Article in English | MEDLINE | ID: mdl-37781101

ABSTRACT

Introduction: By 2050, the worldwide percentage of people 65 years and older is assumed to have doubled compared to current numbers. Therefore, finding ways of promoting healthy (cognitive) aging is crucial. Physical activity is considered an effective approach to counteract not only physical but also cognitive decline. However, the underlying mechanisms that drive the benefits of regular physical activity on cognitive function are not fully understood. This randomized controlled trial aims to analyze the effect of an eight-week standardized physical activity training program in older humans on cognitive, brain, and gut-barrier function as well as the relationship between the resulting changes. Methods and analysis: One-hundred healthy participants aged 60 to 75 years will be recruited. First, participants will undergo an extensive baseline assessment consisting of neurocognitive tests, functional and structural brain imaging, physical fitness tests, and gut-microbiome profiling. Next, participants will be randomized into either a multi-component physical activity group (experimental condition) or a relaxation group (active control condition), with each training lasting 8 weeks and including an equal number and duration of exercises. The whole intervention will be online-based, i.e., participants will find their intervention schedule and all materials needed on the study website. After the intervention phase, participants will have their post-intervention assessment, which consists of the same measures and tests as the baseline assessment. The primary outcome of this study is the change in the cognitive parameter of visual processing speed from baseline to post-measurement, which will on average take place 10 weeks after the randomization. Secondary outcomes related to cognitive, brain, and microbiome data will be analyzed exploratory. Clinical trial registration: https://drks.de/search/de/trial/DRKS00028022.

13.
medRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37873296

ABSTRACT

Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.

14.
Neuroimage ; 281: 120349, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37683808

ABSTRACT

BACKGROUND: Multivariate data-driven statistical approaches offer the opportunity to study multi-dimensional interdependences between a large set of biological parameters, such as high-dimensional brain imaging data. For gyrification, a putative marker of early neurodevelopment, direct comparisons of patterns among multiple psychiatric disorders and investigations of potential heterogeneity of gyrification within one disorder and a transdiagnostic characterization of neuroanatomical features are lacking. METHODS: In this study we used a data-driven, multivariate statistical approach to analyze cortical gyrification in a large cohort of N = 1028 patients with major psychiatric disorders (Major depressive disorder: n = 783, bipolar disorder: n = 129, schizoaffective disorder: n = 44, schizophrenia: n = 72) to identify cluster patterns of gyrification beyond diagnostic categories. RESULTS: Cluster analysis applied on gyrification data of 68 brain regions (DK-40 atlas) identified three clusters showing difference in overall (global) gyrification and minor regional variation (regions). Newly, data-driven subgroups are further discriminative in cognition and transdiagnostic disease risk factors. CONCLUSIONS: Results indicate that gyrification is associated with transdiagnostic risk factors rather than diagnostic categories and further imply a more global role of gyrification related to mental health than a disorder specific one. Our findings support previous studies highlighting the importance of association cortices involved in psychopathology. Explorative, data-driven approaches like ours can help to elucidate if the brain imaging data on hand and its a priori applied grouping actually has the potential to find meaningful effects or if previous hypotheses about the phenotype as well as its grouping have to be revisited.


Subject(s)
Depressive Disorder, Major , Psychotic Disorders , Schizophrenia , Humans , Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Cluster Analysis
15.
Lancet Healthy Longev ; 4(8): e374-e385, 2023 08.
Article in English | MEDLINE | ID: mdl-37454673

ABSTRACT

BACKGROUND: Cognitive abilities, particularly memory, normally decline with age. However, some individuals, often designated as superagers, can reach late life with the memory function of individuals 30 years younger. We aimed to characterise the brain structure of superagers and identify demographic, lifestyle, and clinical factors associated with this phenotype. METHODS: We selected cognitively healthy participants from the Vallecas Project longitudinal cohort recruited between Oct 10, 2011, and Jan 14, 2014, aged 79·5 years or older, on the basis of their delayed verbal episodic memory score. Participants were assessed with the Free and Cued Selective Reminding Test and with three non-memory tests (the 15-item version of the Boston Naming Test, the Digit Symbol Substitution Test, and the Animal Fluency Test). Participants were classified as superagers if they scored at or above the mean values for a 50-56-year-old in the Free and Cued Selective Reminding Test and within one standard deviation of the mean or above for their age and education level in the three non-memory tests, or as typical older adults if they scored within one standard deviation of the mean for their age and education level in the Free and Cued Selective Reminding Test. Data acquired as per protocol from up to six yearly follow-ups were used for longitudinal analyses. FINDINGS: We included 64 superagers (mean age 81·9 years; 38 [59%] women and 26 [41%] men) and 55 typical older adults (82·4 years; 35 [64%] women and 20 [36%] men). The median number of follow-up visits was 5·0 (IQR 5·0-6·0) for superagers and 5·0 (4·5-6·0) for typical older adults. Superagers exhibited higher grey matter volume cross-sectionally in the medial temporal lobe, cholinergic forebrain, and motor thalamus. Longitudinally, superagers also showed slower total grey matter atrophy, particularly within the medial temporal lobe, than did typical older adults. A machine learning classification including 89 demographic, lifestyle, and clinical predictors showed that faster movement speed (despite no group differences in exercise frequency) and better mental health were the most differentiating factors for superagers. Similar concentrations of dementia blood biomarkers in superager and typical older adult groups suggest that group differences reflect inherent superager resistance to typical age-related memory loss. INTERPRETATION: Factors associated with dementia prevention are also relevant for resistance to age-related memory decline and brain atrophy, and the association between superageing and movement speed could provide potential novel insights into how to preserve memory function into the ninth decade. FUNDING: Queen Sofia Foundation, CIEN Foundation, Spanish Ministry of Science and Innovation, Alzheimer's Association, European Research Council, MAPFRE Foundation, Carl Zeiss Foundation, and the EU Comission for Horizon 2020. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
Brain , Dementia , Female , Male , Humans , Brain/pathology , Cognition , Phenotype , Atrophy/pathology
16.
Cells ; 12(3)2023 01 28.
Article in English | MEDLINE | ID: mdl-36766774

ABSTRACT

Aging is accompanied by macro-structural alterations in the brain that may relate to age-associated cognitive decline. Animal studies could allow us to study this relationship, but so far it remains unclear whether their structural aging patterns correspond to those in humans. Therefore, by applying magnetic resonance imaging (MRI) and deformation-based morphometry (DBM), we longitudinally screened the brains of male RccHan:WIST rats for structural changes across their average lifespan. By combining dedicated region of interest (ROI) and voxel-wise approaches, we observed an increase in their global brain volume that was superimposed by divergent local morphologic alterations, with the largest aging effects in early and middle life. We detected a modality-dependent vulnerability to shrinkage across the visual, auditory, and somato-sensory cortical areas, whereas the piriform cortex showed partial resistance. Furthermore, shrinkage emerged in the amygdala, subiculum, and flocculus as well as in frontal, parietal, and motor cortical areas. Strikingly, we noticed the preservation of ectorhinal, entorhinal, retrosplenial, and cingulate cortical regions, which all represent higher-order brain areas and extraordinarily grew with increasing age. We think that the findings of this study will further advance aging research and may contribute to the establishment of interventional approaches to preserve cognitive health in advanced age.


Subject(s)
Brain , Cognitive Dysfunction , Humans , Male , Animals , Rats , Brain/pathology , Aging/pathology , Magnetic Resonance Imaging/methods , Hippocampus , Cognitive Dysfunction/pathology
17.
Brain Struct Funct ; 228(2): 577-588, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36574049

ABSTRACT

Music-making and engagement in music-related activities have shown procognitive benefits for healthy and pathological populations, suggesting reductions in brain aging. A previous brain aging study, using Brain Age Gap Estimation (BrainAGE), showed that professional and amateur-musicians had younger appearing brains than non-musicians. Our study sought to replicate those findings and analyze if musical training or active musical engagement was necessary to produce an age-decelerating effect in a cohort of healthy individuals. We scanned 125 healthy controls and investigated if musician status, and if musical behaviors, namely active engagement (AE) and musical training (MT) [as measured using the Goldsmiths Musical Sophistication Index (Gold-MSI)], had effects on brain aging. Our findings suggest that musician status is not related to BrainAGE score, although involvement in current physical activity is. Although neither MT nor AE subscales of the Gold-MSI are predictive for BrainAGE scores, dispositional resilience, namely the ability to deal with challenge, is related to both musical behaviors and sensitivity to musical pleasure. While the study failed to replicate the findings in a previous brain aging study, musical training and active musical engagement are related to the resilience factor of challenge. This finding may reveal how such musical behaviors can potentially strengthen the brain's resilience to age, which may tap into a type of neurocognitive reserve.


Subject(s)
Music , Humans , Brain , Aging , Gold
18.
Schizophr Bull ; 49(2): 309-318, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36226895

ABSTRACT

BACKGROUND AND HYPOTHESIS: Psychotic Like Experiences (PLEs) are widely prevalent in children and adolescents and increase the risk of developing psychosis. Cortical gyrification characterizes brain development from in utero till about the first 2 years of life and can be measured in later years as static gyrification changes demonstrating neurodevelopment and dynamic gyrification changes reflecting brain maturation during adolescence. We hypothesized that PLEs would be associated with static cortical gyrification changes reflecting a neurodevelopmental abnormality. STUDY DESIGN: We studied 1252 adolescents recruited in the IMAGEN consortium. We used a longitudinal study design, with Magnetic Resonance Imaging measurements at age 14 years and age 19 years; measurement of PLEs using the Community Assessment of Psychic Experiences (CAPE) questionnaire at age 19 years; and clinical diagnoses at age 23 years. STUDY RESULTS: Our results show static gyrification changes in adolescents with elevated PLEs on 3 items of the CAPE-voice hearing, unusual experiences of receiving messages, and persecutory ideas-with lower cortical gyrification in fronto-temporal regions in the left hemisphere. This group also demonstrated dynamic gyrification changes with higher cortical gyrification in right parietal cortex in late adolescence; a finding that we replicated in an independent sample of patients with first-episode psychosis. Adolescents with high PLEs were also 5.6 times more likely to transition to psychosis in adulthood by age 23 years. CONCLUSIONS: This is the largest study in adolescents that demonstrates fronto-temporal abnormality of cortical gyrification as a potential biomarker for vulnerability to PLEs and transition to psychosis.


Subject(s)
Psychotic Disorders , Child , Humans , Adolescent , Young Adult , Adult , Longitudinal Studies , Psychotic Disorders/diagnosis , Surveys and Questionnaires , Interpersonal Relations , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology
19.
Article in English | MEDLINE | ID: mdl-35276405

ABSTRACT

BACKGROUND: Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS: We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS: Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS: Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.


Subject(s)
Gray Matter , Premature Birth , Humans , Female , Gray Matter/pathology , Premature Birth/pathology , Magnetic Resonance Imaging/methods , Birth Weight
20.
Front Psychiatry ; 13: 1019546, 2022.
Article in English | MEDLINE | ID: mdl-36532197

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD) is a debilitating disorder with apparent roots in abnormal brain development. Here, we quantified the level of individual brain maturation in children with ADHD using structural neuroimaging and a recently developed machine learning algorithm. More specifically, we compared the BrainAGE index between three groups matched for chronological age (mean ± SD: 11.86 ± 3.25 years): 89 children diagnosed with ADHD, 34 asymptomatic siblings of those children with ADHD, and 21 unrelated healthy control children. Brains of children with ADHD were estimated significantly younger (-0.85 years) than brains of healthy controls (Cohen's d = -0.33; p = 0.028, one-tailed), while there were no significant differences between unaffected siblings and healthy controls. In addition, more severe ADHD symptoms were significantly associated with younger appearing brains. Altogether, these results are in line with the proposed delay of individual brain maturation in children with ADHD. However, given the relatively small sample size (N = 144), the findings should be considered preliminary and need to be confirmed in future studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...