Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 7(5): e35224, 2012.
Article in English | MEDLINE | ID: mdl-22567097

ABSTRACT

Salinity is a key abiotic property of inland waters; it has a major influence on biotic communities and is affected by many natural and anthropogenic processes. Salinity of inland waters tends to increase with aridity, and biota of inland waters may have evolved greater salt tolerance in more arid regions. Here we compare the sensitivity of stream macroinvertebrate species to salinity from a relatively wet region in France (Lorraine and Brittany) to that in three relatively arid regions eastern Australia (Victoria, Queensland and Tasmania), South Africa (south-east of the Eastern Cape Province) and Israel using the identical experimental method in all locations. The species whose salinity tolerance was tested, were somewhat more salt tolerant in eastern Australia and South Africa than France, with those in Israel being intermediate. However, by far the greatest source of variation in species sensitivity was between taxonomic groups (Order and Class) and not between the regions. We used a bayesian statistical model to estimate the species sensitivity distributions (SSDs) for salinity in eastern Australia and France adjusting for the assemblages of species in these regions. The assemblage in France was slightly more salinity sensitive than that in eastern Australia. We therefore suggest that regional salinity sensitivity is therefore likely to depend most on the taxonomic composition of respective macroinvertebrate assemblages. On this basis it would be possible to screen rivers globally for risk from salinisation.


Subject(s)
Invertebrates , Salinity , Animals , Australia , Bayes Theorem , Ecosystem , Environmental Monitoring , France , Israel , Queensland , Rivers , South Africa , Tasmania , Victoria
2.
Zookeys ; (119): 37-52, 2011.
Article in English | MEDLINE | ID: mdl-21998516

ABSTRACT

Species identification using the characteristics of developmental stages is challenging. However, for insect taxonomy the coloration of larval stages can be an informative feature. The use of live specimens is recommended for this because the color fades in preserved specimens. In this study we examine the possibility of using variation in coloration and color pattern of larvae in order to distinguish between twoground beetlesspecies Epomis dejeani (Dejean, 1831) and Epomis circumscriptus (Duftschmid, 1812). We present an atlas and describe the coloration and body size of the three larval stages of the above species based on live specimens. An identification key is given for the three larval instars of the two Epomis species.The first instar larvae of the two Epomis species can be easily distinguished based on their color. From the second instar on, the variability in coloration and color patterns increases, creating an overlap in these attributes between larvae of the two species. Except for minor differences in color of the antennae and the base of the mandibles, larvae of the two species are indistinguishable at the second and third larval stages. To the best of our knowledge this is the first attempt to use variation in coloration and color pattern in live larvae in order to identify coleopterans. The color atlas of the larvae enables simple separation of the two Epomis species without requiring sophisticated magnifying devices, although it is less straightforward at the second and third larval stages.We found similar body lengths between the two species for all developmental stages, except for third instar larvae prior to pupation. In the two species the difference in larval body length before pupation positively correlated with that of the adult beetles. More than 70% of the adults' length can be explained by the length of the late third-instar larva; i.e. the large larvae develop into large adults. The larger specimens are the females.

3.
PLoS One ; 6(9): e25161, 2011.
Article in English | MEDLINE | ID: mdl-21957480

ABSTRACT

Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae). Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani) lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal.


Subject(s)
Coleoptera/physiology , Predatory Behavior , Amphibians , Animals , Larva/physiology , Species Specificity
4.
Zookeys ; (100): 181-91, 2011.
Article in English | MEDLINE | ID: mdl-21738411

ABSTRACT

The genus Epomis is represented in Israel by two species: Epomis dejeani and Epomis circumscriptus. In the central coastal plain these species are sympatric but do not occur in the same sites. The objective of this study was to record and describe trophic interactions between the adult beetles and amphibian species occurring in the central coastal plain of Israel. Day and night surveys at three sites, as well as controlled laboratory experiments were conducted for studying beetle-amphibian trophic interaction. In the field we recorded three cases of Epomis dejeani preying upon amphibian metamorphs and also found that Epomis adults share shelters with amphibians. Laboratory experiments supported the observations that both Epomis species can prey on amphibians. Predation of the three anuran species (Bufo viridis, Hyla savignyi and Rana bedriagae) and two urodele species (Triturus vittatus and Salamandra salamandra infraimmaculata) is described. Only Epomis dejeani consumed Triturus vittatus. Therefore, we conclude that the two species display a partial overlap in food habit.

5.
Microb Ecol ; 59(4): 700-9, 2010 May.
Article in English | MEDLINE | ID: mdl-19946683

ABSTRACT

The idea of using constructed wetlands for the treatment and improving of wastewater emerged in the second half of the last century. Despite relatively wide use of this environmentally friendly technology, relatively little is known about the microbial populations involved in biotransformation and removal of contaminants in this system. The aim of the current study was to investigate the assembly and function of microbial populations in vertical-flow constructed wetland microcosms designed to improve the quality of wastewater after activated sludge treatment. Also, the performance of 3-year-old wetland ponds was investigated. Even though the quality of the influent water was relatively high, improvement in water parameters such as coliform level, ammonia concentration, BOD, and TSS was observed. The performance of the wetland ponds was comparable to that of the microcosms. The microbial community composition of the biofilm formed on the surface of gravel particles in vegetated and plant-free microcosms was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene fragments. Highly complex bacterial diversity was observed in the biofilm. Cluster analysis of DGGE patterns demonstrated that depth within the wetland microcosm has a stronger effect on microbial community composition of the biofilm formed on wetland matrix than vegetation. Measurements of fluorescein diacetate hydrolysis activity and nitrification potential revealed that hydrolytic activity was affected by both microcosm depth and vegetation presence, whereas nitrification potential was mostly influenced by depth. Resolving the bacterial assemblage of wetland biofilm, which often is considered a black box, will help to understand the interactions involved in the development of diverse and mature biofilm and its function.


Subject(s)
Bacteria/growth & development , Biofilms , Waste Disposal, Fluid/methods , Water Microbiology , Wetlands , Bacteria/classification , Bacteria/genetics , Biodiversity , Cluster Analysis , Electrophoresis, Polyacrylamide Gel , Phylogeny , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
6.
Mar Environ Res ; 54(1): 85-98, 2002.
Article in English | MEDLINE | ID: mdl-12148946

ABSTRACT

The mussel Brachidontes pharaonis, which invaded the Mediterranean from the Red Sea about 120 years ago, has recently become abundant in many midlittoral and some infralittoral rocky habitats along the Israeli rocky shore. We investigated the influence of B. pharaonis, as a novel prey, on the foraging patterns of the large whelk Stramonita haemastoma in the field, and examined food preferences in the laboratory. S. haemastoma has shifted from indigenous species to feeding on the novel mussel when abundant. The whelk prefers to prey upon the invasive mussel over all indigenous species offered (e.g. barnacles and mussels), probably due to its larger size. In the midlittoral zone, the foraging activity of S. haemastoma is considerably low even where refuges are readily available (incisioned-rocks) and food density is high (mainly B. pharaonis). Higher proportions of whelks are actively foraging in the infralittoral zone but usually on smaller prey, mostly barnacles. We suggest that this differential foraging activity in the two zones is related to the degree of exposure to wave action. The midlittoral is inherently more exposed to wave action than the infralittoral, where sea conditions are more benign and the whelks may enjoy longer activity periods.


Subject(s)
Bivalvia , Feeding Behavior , Snails , Animals , Ecosystem , Environment , Movement , Population Dynamics , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL