Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1190219, 2023.
Article in English | MEDLINE | ID: mdl-37575265

ABSTRACT

NOD-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome modulation has emerged as a potential therapeutic approach targeting inflammation amplified by pyroptotic innate immune cell death. In diseases characterized by non-cell autonomous neurodegeneration including amyotrophic lateral sclerosis (ALS), the activation of several inflammasomes has been reported. Since functional redundancy can exist among inflammasome pathways, here we investigate the effects of NLRP3 inhibition on NLRP3, NLR family CARD Domain Containing 4 (NLRC4) and non-canonical pathways to understand whether NLRP3 blockade alone can mitigate pro-inflammatory cytokine release and pyroptotic cell death in contexts where single or multiple inflammasome pathways independent of NLRP3 are activated. In this study we do not limit our insights into inflammasome biology by solely relying on the THP-1 monocytic line under the LPS/nigericin-mediated NLRP3 pathway activation paradigm. We assess therapeutic potential and limitations of NLRP3 inhibition in multi-inflammasome activation contexts utilizing various human cellular systems including cell lines expressing gain of function (GoF) mutations for several inflammasomes, primary human monocytes, macrophages, healthy and Amyotrophic Lateral Sclerosis (ALS) patient induced pluripotent stem cells (iPSC)-derived microglia (iMGL) stimulated for canonical and non-canonical inflammasome pathways. We demonstrate that NLRP3 inhibition can modulate the NLRC4 and non-canonical inflammasome pathways; however, these effects differ between immortalized, human primary innate immune cells, and iMGL. We extend our investigation in more complex systems characterized by activation of multiple inflammasomes such as the SOD1G93A mouse model. Through deep immune phenotyping by single-cell mass cytometry we demonstrate that acute NLRP3 inhibition does not ameliorate spinal cord inflammation in this model. Taken together, our data suggests that NLRP3 inhibition alone may not be sufficient to address dynamic and complex neuroinflammatory pathobiological mechanisms including dysregulation of multiple inflammasome pathways in neurodegenerative disease such as ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Mice , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , NLR Proteins
2.
Front Mol Neurosci ; 16: 1191324, 2023.
Article in English | MEDLINE | ID: mdl-37415834

ABSTRACT

Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by CAG repeats in exon 1 of the HTT gene. A hallmark of HD along with other psychiatric and neurodegenerative diseases is alteration in the neuronal circuitry and synaptic loss. Microglia and peripheral innate immune activation have been reported in pre-symptomatic HD patients; however, what "activation" signifies for microglial and immune function in HD and how it impacts synaptic health remains unclear. In this study we sought to fill these gaps by capturing immune phenotypes and functional activation states of microglia and peripheral immunity in the R6/2 model of HD at pre-symptomatic, symptomatic and end stages of disease. These included characterizations of microglial phenotypes at single cell resolution, morphology, aberrant functions such as surveillance and phagocytosis and their impact on synaptic loss in vitro and ex vivo in R6/2 mouse brain tissue slices. To further understand how relevant the observed aberrant microglial behaviors are to human disease, transcriptomic analysis was performed using HD patient nuclear sequencing data and functional assessments were conducted using induced pluripotent stem cell (iPSC)-derived microglia. Our results show temporal changes in brain infiltration of peripheral lymphoid and myeloid cells, increases in microglial activation markers and phagocytic functions at the pre-symptomatic stages of disease. Increases in microglial surveillance and synaptic uptake parallel significant reduction of spine density in R6/2 mice. These findings were mirrored by an upregulation of gene signatures in the endocytic and migratory pathways in disease-associated microglial subsets in human HD brains, as well as increased phagocytic and migratory functions of iPSC-derived HD microglia. These results collectively suggest that targeting key and specific microglial functions related to synaptic surveillance and pruning may be therapeutically beneficial in attenuating cognitive decline and psychiatric aspects of HD.

3.
Opt Express ; 30(5): 6768-6777, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299455

ABSTRACT

We present a Raman distributed temperature sensor based on standard telecom single mode fibers and efficient polarization-independent superconducting nanowire single photon detectors. Our device shows 3 cm and 1.5 °C resolution on a 5 m fiber upon one minute integration. We show that spatial resolution is limited by the laser pulse width and not by the detection system. Moreover, for long fibers the minimum distance for a measurable temperature step change increases of around 4 cm per km length, because of chromatic dispersion at the Stokes and Anti-Stokes wavelengths. Temperature resolution is mainly affected by the drop in the laser repetition rate when long fibers are tested. On a 500 m fiber, a trade-off of 10 cm and 8 °C resolution is achieved with 3 minutes integration. Fiber-based distributed temperature sensing, combining centimetric spatial resolution with hundreds of meters sensing range, could pave the way for a new kind of applications, such as 2D and 3D temperature mapping of complex electronic devices, particles detectors, cryogenic and aerospace instrumentation.

4.
Neurobiol Learn Mem ; 167: 107131, 2020 01.
Article in English | MEDLINE | ID: mdl-31783128

ABSTRACT

Response and place memory systems have long been considered independent, encoding information in parallel, and involving the striatum and hippocampus, respectively. Most experimental studies supporting this view used simple, repetitive tasks, with unrestrained access to spatial cues. They did not give animals an opportunity to correct a response strategy by shifting to a place one, which would demonstrate dynamic, adaptive interactions between both memory systems in the navigation correction process. In a first experiment, rats were trained in the double-H maze for different durations (1, 6, or 14 days; 4 trials/day) to acquire a repetitive task in darkness (forcing a response memory-based strategy) or normal light (placing response and place memory systems in balance), or to acquire a place memory. All rats were given a misleading shifted-start probe trial 24-h post-training to test both their strategy and their ability to correct their navigation directly or in response to negative feedback. Additional analyses focused on the dorsal striatum and the dorsal hippocampus using c-Fos gene expression imaging and, in a second experiment, reversible muscimol inactivation. The results indicate that, depending on training protocol and duration, the striatum, which was unexpectedly the first to come into play in the dual strategy task, and the hippocampus are both required when rats have to correct their navigation after having acquired a repetitive task in a cued environment. Partly contradicting the model established by Packard and McGaugh (1996, Neurobiology of Learning and Memory, vol. 65), these data point to memory systems that interact in more complex ways than considered so far. To some extent, they also challenge the notion of hippocampus-independent response memory and striatum-independent place memory systems.


Subject(s)
Hippocampus/physiology , Maze Learning/physiology , Neostriatum/physiology , Neurons/physiology , Spatial Memory/physiology , Spatial Navigation/physiology , Animals , Cues , Male , Proto-Oncogene Proteins c-fos/analysis , Rats, Long-Evans
5.
J Neuroimmune Pharmacol ; 14(3): 448-461, 2019 09.
Article in English | MEDLINE | ID: mdl-30758770

ABSTRACT

Bruton's tyrosine kinase (BTK), a critical component of B cell receptor signaling, has recently been implicated in regulation of the peripheral innate immune response. However, the role of BTK in microglia, the resident innate immune cells of the central nervous system, and its involvement in the pathobiology of neurodegenerative disease has not been explored. Here we found that BTK is a key regulator of microglial phagocytosis. Using potent BTK inhibitors and small interfering RNA (siRNA) against BTK, we observed that blockade of BTK activity decreased activation of phospholipase gamma 2, a recently identified genetic risk factor in Alzheimer's disease (AD), and reduced phagocytosis in rodent microglia and human monocyte-derived macrophages. Inhibition of BTK signaling also decreased microglial uptake of synaptosomes but did not have major impacts on other key microglial functions such as migration and cytokine release. Similarly, blocking BTK function ex vivo in acute brain slices reduced microglial phagocytosis and maintained numbers of resting microglia. In brain tissues from the 5xFAD mouse model of AD, levels of microglial BTK were elevated while in two gene expression datasets of post-mortem AD patient brain tissues, upregulation of BTK transcript was observed. Our study provides novel insights into the role of BTK in regulating microglial phagocytosis and uptake of synaptic structures and suggests that inhibiting microglial BTK may improve cognition in AD by preventing microglial activation and synaptic loss. Graphical Abstract Microglial-mediated synapse loss has been implicated in AD pathogenesis. Inhibition of BTK decreases activation of PLCγ2, a genetic risk factor in AD, and reduces microglial phagocytosis and uptake of synaptic structures. As such BTK inhibition may represent a therapeutic route to prevent microglial activation and synapse loss in AD.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Alzheimer Disease/drug therapy , Microglia/drug effects , Nerve Tissue Proteins/antagonists & inhibitors , Phagocytosis/drug effects , Protein Kinase Inhibitors/pharmacology , Acrylamides/pharmacology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/analysis , Agammaglobulinaemia Tyrosine Kinase/biosynthesis , Agammaglobulinaemia Tyrosine Kinase/genetics , Alzheimer Disease/enzymology , Animals , Brain/enzymology , Cell Line , Cell Movement/drug effects , Cytokines/metabolism , Datasets as Topic , Enzyme Induction/drug effects , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Microglia/enzymology , Microglia/physiology , Microglia/ultrastructure , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Piperidines , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley
6.
Nat Commun ; 9(1): 3561, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177815

ABSTRACT

The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning ("Causal Reasoning Analytical Framework for Target discovery"-CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy, Temporal Lobe/genetics , Epilepsy/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Animals , Computer Simulation , Disease Models, Animal , Drug Discovery , Epilepsy/chemically induced , Epilepsy/drug therapy , Gene Expression Profiling , Gene Expression Regulation , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Mice , Molecular Targeted Therapy , Muscarinic Agonists/toxicity , Pilocarpine/toxicity , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Sequence Analysis, RNA , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...