Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38503494

ABSTRACT

The subiculum (SUB), a hippocampal formation structure, is among the earliest brain regions impacted in Alzheimer's disease (AD). Toward a better understanding of AD circuit-based mechanisms, we mapped synaptic circuit inputs to dorsal SUB using monosynaptic rabies tracing in the 5xFAD mouse model by quantitatively comparing the circuit connectivity of SUB excitatory neurons in age-matched controls and 5xFAD mice at different ages for both sexes. Input-mapped brain regions include the hippocampal subregions (CA1, CA2, CA3), medial septum and diagonal band, retrosplenial cortex, SUB, postsubiculum (postSUB), visual cortex, auditory cortex, somatosensory cortex, entorhinal cortex, thalamus, perirhinal cortex (Prh), ectorhinal cortex, and temporal association cortex. We find sex- and age-dependent changes in connectivity strengths and patterns of SUB presynaptic inputs from hippocampal subregions and other brain regions in 5xFAD mice compared with control mice. Significant sex differences for SUB inputs are found in 5xFAD mice for CA1, CA2, CA3, postSUB, Prh, lateral entorhinal cortex, and medial entorhinal cortex: all of these areas are critical for learning and memory. Notably, we find significant changes at different ages for visual cortical inputs to SUB. While the visual function is not ordinarily considered defective in AD, these specific connectivity changes reflect that altered visual circuitry contributes to learning and memory deficits. Our work provides new insights into SUB-directed neural circuit mechanisms during AD progression and supports the idea that neural circuit disruptions are a prominent feature of AD.


Subject(s)
Alzheimer Disease , Rabies , Mice , Female , Male , Animals , Hippocampus , Entorhinal Cortex/physiology , Neurons/physiology
2.
Neurobiol Dis ; 172: 105820, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35843448

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with growing major health impacts, particularly in countries with aging populations. The examination of neural circuit mechanisms in AD mouse models is a recent focus for identifying new AD treatment strategies. We hypothesize that age-progressive changes of both long-range and local hippocampal neural circuit connectivity occur in AD. Recent advancements in viral-genetic technologies provide new opportunities for semi-quantitative mapping of cell-type-specific neural circuit connections in AD mouse models. We applied a recently developed monosynaptic rabies tracing method to hippocampal neural circuit mapping studies in AD model mice to determine how local and global circuit connectivity to hippocampal CA1 excitatory neurons may be altered in the single APP knock-in (APP-KI) AD mouse model. To determine age-related AD progression, we measured circuit connectivity in age-matched littermate control and AD model mice at two different ages (3-4 vs. 10-11 months old). We quantitatively mapped the connectivity strengths of neural circuit inputs to hippocampal CA1 excitatory neurons from brain regions including hippocampal subregions, medial septum, subiculum and entorhinal cortex, comparing different age groups and genotypes. We focused on hippocampal CA1 because of its clear relationship with learning and memory and that the hippocampal formation shows clear neuropathological changes in human AD. Our results reveal alterations in circuit connectivity of hippocampal CA1 in AD model mice. Overall, we find weaker extrinsic CA1 input connectivity strengths in AD model mice compared with control mice, including sex differences of reduced subiculum to CA1 inputs in aged female AD mice compared with aged male AD mice. Unexpectedly, we find a connectivity pattern shift with an increased proportion of inputs from the CA3 region to CA1 excitatory neurons when comparing young and old AD model mice, as well as old wild-type mice and old AD model mice. These unexpected shifts in CA3-CA1 input proportions in this AD mouse model suggest the possibility that compensatory circuit increases may occur in response to connectivity losses in other parts of the hippocampal circuits. We expect that this work provides new insights into the neural circuit mechanisms of AD pathogenesis.


Subject(s)
Alzheimer Disease , Rabies virus , Aged , Alzheimer Disease/pathology , Animals , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Entorhinal Cortex/pathology , Female , Hippocampus/pathology , Humans , Infant , Male , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...