Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(12)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545713

ABSTRACT

The present manuscript focuses on reviewing the optical techniques proposed to monitor milk quality in dairy farms to increase productivity and reduce costs. As is well known, the quality is linked to the fat and protein concentration; in addition, this issue is crucial to maintaining a healthy herd and preventing illnesses such as mastitis and ketosis. Usually, the quality of the milk is carried out with invasive methods employing chemical reagents that increase the time analysis. As a solution, several spectroscopy optical methods have been proposed, here, the benefits such as non-invasive measurement, online implementation, rapid estimation, and cost-effective execution. The most attractive optical methods to estimate fat and protein in cow's milk are compared and discussed considering their performance. The analysis is divided considering the wavelength operation (ultraviolet, visible, and infrared). Moreover, the weaknesses and strengths of the methods are fully analyzed. Finally, we provide the trends and a recent technique based on spectroscopy in the visible wavelength.


Subject(s)
Dietary Fats/analysis , Milk Proteins/analysis , Milk/chemistry , Spectrum Analysis/methods , Animals , Cattle , Female
2.
Sensors (Basel) ; 19(20)2019 Oct 20.
Article in English | MEDLINE | ID: mdl-31635201

ABSTRACT

The present work experimentally demonstrates a multimode fiber optic sensing setup for total fat detection in raw milk samples. The optical fiber arrangement incorporates a low-coherence Fabry-Perot cavity operating in dual response. The system provides a phase modulation for a total fat range from 0.97% to 4.36%. Here, the protein remains constant at 3%. The data indicate that maximum sensitivity close to 616 pm/%fat could be achieved at optimal wavelength operation (500 nm). In addition, the system presented a minimal repeatability error measurement of 0.08%, cross-sensitivity between protein and fat of 0.134, and a regression coefficient of r2=0.9763. A thermal analysis was also performed, which indicate the temperature immunity of the system. The proposed method represents a low-cost alternative to detect minimal fat variations in raw cow milk.


Subject(s)
Fatty Acids/analysis , Interferometry/methods , Milk/chemistry , Animals , Cattle , Interferometry/instrumentation , Refractometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...