Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Database (Oxford) ; 20222022 04 12.
Article in English | MEDLINE | ID: mdl-35411389

ABSTRACT

SwissBioPics (www.swissbiopics.org) is a freely available resource of interactive, high-resolution cell images designed for the visualization of subcellular location data. SwissBioPics provides images describing cell types from all kingdoms of life-from the specialized muscle, neuronal and epithelial cells of animals, to the rods, cocci, clubs and spirals of prokaryotes. All cell images in SwissBioPics are drawn in Scalable Vector Graphics (SVG), with each subcellular location tagged with a unique identifier from the controlled vocabulary of subcellular locations and organelles of UniProt (https://www.uniprot.org/locations/). Users can search and explore SwissBioPics cell images through our website, which provides a platform for users to learn more about how cells are organized. A web component allows developers to embed SwissBioPics images in their own websites, using the associated JavaScript and a styling template, and to highlight subcellular locations and organelles by simply providing the web component with the appropriate identifier(s) from the UniProt-controlled vocabulary or the 'Cellular Component' branch of the Gene Ontology (www.geneontology.org), as well as an organism identifier from the National Center for Biotechnology Information taxonomy (https://www.ncbi.nlm.nih.gov/taxonomy). The UniProt website now uses SwissBioPics to visualize the subcellular locations and organelles where proteins function. SwissBioPics is freely available for anyone to use under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. DATABASE URL: www.swissbiopics.org.


Subject(s)
Proteins , Vocabulary, Controlled , Animals
2.
Nucleic Acids Res ; 50(D1): D693-D700, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34755880

ABSTRACT

Rhea (https://www.rhea-db.org) is an expert-curated knowledgebase of biochemical reactions based on the chemical ontology ChEBI (Chemical Entities of Biological Interest) (https://www.ebi.ac.uk/chebi). In this paper, we describe a number of key developments in Rhea since our last report in the database issue of Nucleic Acids Research in 2019. These include improved reaction coverage in Rhea, the adoption of Rhea as the reference vocabulary for enzyme annotation in the UniProt knowledgebase UniProtKB (https://www.uniprot.org), the development of a new Rhea website, and the designation of Rhea as an ELIXIR Core Data Resource. We hope that these and other developments will enhance the utility of Rhea as a reference resource to study and engineer enzymes and the metabolic systems in which they function.


Subject(s)
Chemical Phenomena , Databases, Factual , Software , Animals , Humans , Internet , Knowledge Bases
3.
Metabolites ; 11(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445429

ABSTRACT

The UniProt Knowledgebase UniProtKB is a comprehensive, high-quality, and freely accessible resource of protein sequences and functional annotation that covers genomes and proteomes from tens of thousands of taxa, including a broad range of plants and microorganisms producing natural products of medical, nutritional, and agronomical interest. Here we describe work that enhances the utility of UniProtKB as a support for both the study of natural products and for their discovery. The foundation of this work is an improved representation of natural product metabolism in UniProtKB using Rhea, an expert-curated knowledgebase of biochemical reactions, that is built on the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Knowledge of natural products and precursors is captured in ChEBI, enzyme-catalyzed reactions in Rhea, and enzymes in UniProtKB/Swiss-Prot, thereby linking chemical structure data directly to protein knowledge. We provide a practical demonstration of how users can search UniProtKB for protein knowledge relevant to natural products through interactive or programmatic queries using metabolite names and synonyms, chemical identifiers, chemical classes, and chemical structures and show how to federate UniProtKB with other data and knowledge resources and tools using semantic web technologies such as RDF and SPARQL. All UniProtKB data are freely available for download in a broad range of formats for users to further mine or exploit as an annotation source, to enrich other natural product datasets and databases.

5.
Nucleic Acids Res ; 48(D1): D261-D264, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31410491

ABSTRACT

The ABCD (for AntiBodies Chemically Defined) database is a repository of sequenced antibodies, integrating curated information about the antibody and its antigen with cross-links to standardized databases of chemical and protein entities. It is freely available to the academic community, accessible through the ExPASy server (https://web.expasy.org/abcd/). The ABCD database aims at helping to improve reproducibility in academic research by providing a unique, unambiguous identifier associated to each antibody sequence. It also allows to determine rapidly if a sequenced antibody is available for a given antigen.


Subject(s)
Antibodies/chemistry , Databases, Protein , Amino Acid Sequence , Antibodies/immunology , Antigens/chemistry , Antigens/immunology
6.
Bioinformatics ; 36(6): 1896-1901, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31688925

ABSTRACT

MOTIVATION: To provide high quality computationally tractable enzyme annotation in UniProtKB using Rhea, a comprehensive expert-curated knowledgebase of biochemical reactions which describes reaction participants using the ChEBI (Chemical Entities of Biological Interest) ontology. RESULTS: We replaced existing textual descriptions of biochemical reactions in UniProtKB with their equivalents from Rhea, which is now the standard for annotation of enzymatic reactions in UniProtKB. We developed improved search and query facilities for the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that Rhea and ChEBI provide. AVAILABILITY AND IMPLEMENTATION: UniProtKB at https://www.uniprot.org; UniProt REST API at https://www.uniprot.org/help/api; UniProt SPARQL endpoint at https://sparql.uniprot.org/; Rhea at https://www.rhea-db.org.


Subject(s)
Rheiformes , Animals , Databases, Protein , Knowledge Bases
7.
J Proteome Res ; 18(2): 664-677, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30574787

ABSTRACT

Knowledge of glycoproteins, their site-specific glycosylation patterns, and the glycan structures that they present to their recognition partners in health and disease is gradually being built on using a range of experimental approaches. The data from these analyses are increasingly being standardized and presented in various sources, from supplemental tables in publications to localized servers in investigator laboratories. Bioinformatics tools are now needed to collect these data and enable the user to search, display, and connect glycomics and glycoproteomics to other sources of related proteomics, genomics, and interactomics information. We here introduce GlyConnect ( https://glyconnect.expasy.org/ ), the central platform of the Glycomics@ExPASy portal for glycoinformatics. GlyConnect has been developed to gather, monitor, integrate, and visualize data in a user-friendly way to facilitate the interpretation of collected glycoscience data. GlyConnect is designed to accommodate and integrate multiple data types as they are increasingly produced.


Subject(s)
Glycomics/methods , Proteomics/methods , Software , Computational Biology/methods , Glycomics/instrumentation , Glycoproteins/analysis , Glycosylation , User-Computer Interface
8.
Mol Cell Proteomics ; 17(11): 2164-2176, 2018 11.
Article in English | MEDLINE | ID: mdl-30097532

ABSTRACT

Glycomics@ExPASy (https://www.expasy.org/glycomics) is the glycomics tab of ExPASy, the server of SIB Swiss Institute of Bioinformatics. It was created in 2016 to centralize web-based glycoinformatics resources developed within an international network of glycoscientists. The hosted collection currently includes mainly databases and tools created and maintained at SIB but also links to a range of reference resources popular in the glycomics community. The philosophy of our toolbox is that it should be {glycoscientist AND protein scientist}-friendly with the aim of (1) popularizing the use of bioinformatics in glycobiology and (2) emphasizing the relationship between glycobiology and protein-oriented bioinformatics resources. The scarcity of data bridging these two disciplines led us to design tools as interactive as possible based on database connectivity to facilitate data exploration and support hypothesis building. Glycomics@ExPASy was designed, and is developed, with a long-term vision in close collaboration with glycoscientists to meet as closely as possible the growing needs of the community for glycoinformatics.


Subject(s)
Glycomics/methods , Software , Data Collection , Glycoproteins/metabolism , Humans , Mass Spectrometry , Polysaccharides/metabolism , Protein Interaction Maps
9.
Methods Mol Biol ; 1558: 139-158, 2017.
Article in English | MEDLINE | ID: mdl-28150237

ABSTRACT

UniCarbKB ( http://unicarbkb.org ) is a comprehensive resource for mammalian glycoprotein and annotation data. In particular, the database provides information on the oligosaccharides characterized from a glycoprotein at either the global or site-specific level. This evidence is accumulated from a peer-reviewed and manually curated collection of information on oligosaccharides derived from membrane and secreted glycoproteins purified from biological fluids and/or tissues. This information is further supplemented with experimental method descriptions that summarize important sample preparation and analytical strategies. A new release of UniCarbKB is published every three months, each includes a collection of curated data and improvements to database functionality. In this Chapter, we outline the objectives of UniCarbKB, and describe a selection of step-by-step workflows for navigating the information available. We also provide a short description of web services available and future plans for improving data access. The information presented in this Chapter supplements content available in our knowledgebase including regular updates on interface improvements, new features, and revisions to the database content ( http://confluence.unicarbkb.org ).


Subject(s)
Computational Biology/methods , Databases, Protein , Glycomics/methods , Glycoproteins , Proteome , Proteomics/methods , Animals , Humans , Search Engine , Software , User-Computer Interface , Web Browser
10.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26538599

ABSTRACT

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Subject(s)
Computational Biology , Registries , Data Curation , Software
11.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-27803796

ABSTRACT

The core mission of ELIXIR is to build a stable and sustainable infrastructure for biological information across Europe. At the heart of this are the data resources, tools and services that ELIXIR offers to the life-sciences community, providing stable and sustainable access to biological data. ELIXIR aims to ensure that these resources are available long-term and that the life-cycles of these resources are managed such that they support the scientific needs of the life-sciences, including biological research. ELIXIR Core Data Resources are defined as a set of European data resources that are of fundamental importance to the wider life-science community and the long-term preservation of biological data. They are complete collections of generic value to life-science, are considered an authority in their field with respect to one or more characteristics, and show high levels of scientific quality and service. Thus, ELIXIR Core Data Resources are of wide applicability and usage. This paper describes the structures, governance and processes that support the identification and evaluation of ELIXIR Core Data Resources. It identifies key indicators which reflect the essence of the definition of an ELIXIR Core Data Resource and support the promotion of excellence in resource development and operation. It describes the specific indicators in more detail and explains their application within ELIXIR's sustainability strategy and science policy actions, and in capacity building, life-cycle management and technical actions. The identification process is currently being implemented and tested for the first time. The findings and outcome will be evaluated by the ELIXIR Scientific Advisory Board in March 2017. Establishing the portfolio of ELIXIR Core Data Resources and ELIXIR Services is a key priority for ELIXIR and publicly marks the transition towards a cohesive infrastructure.

12.
Nucleic Acids Res ; 42(Database issue): D215-21, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24234447

ABSTRACT

The UniCarb KnowledgeBase (UniCarbKB; http://unicarbkb.org) offers public access to a growing, curated database of information on the glycan structures of glycoproteins. UniCarbKB is an international effort that aims to further our understanding of structures, pathways and networks involved in glycosylation and glyco-mediated processes by integrating structural, experimental and functional glycoscience information. This initiative builds upon the success of the glycan structure database GlycoSuiteDB, together with the informatic standards introduced by EUROCarbDB, to provide a high-quality and updated resource to support glycomics and glycoproteomics research. UniCarbKB provides comprehensive information concerning glycan structures, and published glycoprotein information including global and site-specific attachment information. For the first release over 890 references, 3740 glycan structure entries and 400 glycoproteins have been curated. Further, 598 protein glycosylation sites have been annotated with experimentally confirmed glycan structures from the literature. Among these are 35 glycoproteins, 502 structures and 60 publications previously not included in GlycoSuiteDB. This article provides an update on the transformation of GlycoSuiteDB (featured in previous NAR Database issues and hosted by ExPASy since 2009) to UniCarbKB and its integration with UniProtKB and GlycoMod. Here, we introduce a refactored database, supported by substantial new curated data collections and intuitive user-interfaces that improve database searching.


Subject(s)
Databases, Protein , Glycoproteins/chemistry , Polysaccharides/chemistry , Glycoproteins/metabolism , Glycosylation , Internet , Polysaccharides/metabolism , Proteomics
13.
Nucleic Acids Res ; 40(Web Server issue): W597-603, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22661580

ABSTRACT

ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a 'decentralized' way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across 'selected' resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.


Subject(s)
Computational Biology , Proteomics , Software , Computer Graphics , Genomics , Internet , Systems Integration , User-Computer Interface
14.
BMC Genomics ; 11: 92, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20137074

ABSTRACT

BACKGROUND: The methylation of eukaryotic proteins has been proposed to be widespread, but this has not been conclusively shown to date. In this study, we examined 36,854 previously generated peptide mass spectra from 2,607 Saccharomyces cerevisiae proteins for the presence of arginine and lysine methylation. This was done using the FindMod tool and 5 filters that took advantage of the high number of replicate analysis per protein and the presence of overlapping peptides. RESULTS: A total of 83 high-confidence lysine and arginine methylation sites were found in 66 proteins. Motif analysis revealed many methylated sites were associated with MK, RGG/RXG/RGX or WXXXR motifs. Functionally, methylated proteins were significantly enriched for protein translation, ribosomal biogenesis and assembly and organellar organisation and were predominantly found in the cytoplasm and ribosome. Intriguingly, methylated proteins were seen to have significantly longer half-life than proteins for which no methylation was found. Some 43% of methylated lysine sites were predicted to be amenable to ubiquitination, suggesting methyl-lysine might block the action of ubiquitin ligase. CONCLUSIONS: This study suggests protein methylation to be quite widespread, albeit associated with specific functions. Large-scale tandem mass spectroscopy analyses will help to further confirm the modifications reported here.


Subject(s)
Arginine/metabolism , Lysine/metabolism , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Computational Biology , Methylation , Protein Interaction Domains and Motifs , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
BMC Bioinformatics ; 10: 136, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19426475

ABSTRACT

BACKGROUND: The UniProt consortium was formed in 2002 by groups from the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) at Georgetown University, and soon afterwards the website http://www.uniprot.org was set up as a central entry point to UniProt resources. Requests to this address were redirected to one of the three organisations' websites. While these sites shared a set of static pages with general information about UniProt, their pages for searching and viewing data were different. To provide users with a consistent view and to cut the cost of maintaining three separate sites, the consortium decided to develop a common website for UniProt. Following several years of intense development and a year of public beta testing, the http://www.uniprot.org domain was switched to the newly developed site described in this paper in July 2008. DESCRIPTION: The UniProt consortium is the main provider of protein sequence and annotation data for much of the life sciences community. The http://www.uniprot.org website is the primary access point to this data and to documentation and basic tools for the data. These tools include full text and field-based text search, similarity search, multiple sequence alignment, batch retrieval and database identifier mapping. This paper discusses the design and implementation of the new website, which was released in July 2008, and shows how it improves data access for users with different levels of experience, as well as to machines for programmatic access.http://www.uniprot.org/ is open for both academic and commercial use. The site was built with open source tools and libraries. Feedback is very welcome and should be sent to help@uniprot.org. CONCLUSION: The new UniProt website makes accessing and understanding UniProt easier than ever. The two main lessons learned are that getting the basics right for such a data provider website has huge benefits, but is not trivial and easy to underestimate, and that there is no substitute for using empirical data throughout the development process to decide on what is and what is not working for your users.


Subject(s)
Databases, Protein , Sequence Analysis, Protein , Information Storage and Retrieval/methods , Internet , Proteins/chemistry , User-Computer Interface
16.
Nucleic Acids Res ; 34(Web Server issue): W362-5, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16845026

ABSTRACT

ScanProsite--http://www.expasy.org/tools/scanprosite/--is a new and improved version of the web-based tool for detecting PROSITE signature matches in protein sequences. For a number of PROSITE profiles, the tool now makes use of ProRules--context-dependent annotation templates--to detect functional and structural intra-domain residues. The detection of those features enhances the power of function prediction based on profiles. Both user-defined sequences and sequences from the UniProt Knowledgebase can be matched against custom patterns, or against PROSITE signatures. To improve response times, matches of sequences from UniProtKB against PROSITE signatures are now retrieved from a pre-computed match database. Several output modes are available including simple text views and a rich mode providing an interactive match and feature viewer with a graphical representation of results.


Subject(s)
Amino Acids/chemistry , Protein Structure, Tertiary , Sequence Analysis, Protein/methods , Software , Databases, Protein , Internet , Proteins/chemistry , Sequence Homology, Amino Acid , User-Computer Interface
17.
Nucleic Acids Res ; 34(Database issue): D187-91, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16381842

ABSTRACT

The Universal Protein Resource (UniProt) provides a central resource on protein sequences and functional annotation with three database components, each addressing a key need in protein bioinformatics. The UniProt Knowledgebase (UniProtKB), comprising the manually annotated UniProtKB/Swiss-Prot section and the automatically annotated UniProtKB/TrEMBL section, is the preeminent storehouse of protein annotation. The extensive cross-references, functional and feature annotations and literature-based evidence attribution enable scientists to analyse proteins and query across databases. The UniProt Reference Clusters (UniRef) speed similarity searches via sequence space compression by merging sequences that are 100% (UniRef100), 90% (UniRef90) or 50% (UniRef50) identical. Finally, the UniProt Archive (UniParc) stores all publicly available protein sequences, containing the history of sequence data with links to the source databases. UniProt databases continue to grow in size and in availability of information. Recent and upcoming changes to database contents, formats, controlled vocabularies and services are described. New download availability includes all major releases of UniProtKB, sequence collections by taxonomic division and complete proteomes. A bibliography mapping service has been added, and an ID mapping service will be available soon. UniProt databases can be accessed online at http://www.uniprot.org or downloaded at ftp://ftp.uniprot.org/pub/databases/.


Subject(s)
Databases, Protein , Internet , Proteins/chemistry , Proteins/classification , Proteins/physiology , Proteome/chemistry , Sequence Analysis, Protein , Systems Integration , User-Computer Interface
18.
Nucleic Acids Res ; 33(Database issue): D154-9, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15608167

ABSTRACT

The Universal Protein Resource (UniProt) provides the scientific community with a single, centralized, authoritative resource for protein sequences and functional information. Formed by uniting the Swiss-Prot, TrEMBL and PIR protein database activities, the UniProt consortium produces three layers of protein sequence databases: the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt) and the UniProt Reference (UniRef) databases. The UniProt Knowledgebase is a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase with extensive cross-references. This centrepiece consists of two sections: UniProt/Swiss-Prot, with fully, manually curated entries; and UniProt/TrEMBL, enriched with automated classification and annotation. During 2004, tens of thousands of Knowledgebase records got manually annotated or updated; we introduced a new comment line topic: TOXIC DOSE to store information on the acute toxicity of a toxin; the UniProt keyword list got augmented by additional keywords; we improved the documentation of the keywords and are continuously overhauling and standardizing the annotation of post-translational modifications. Furthermore, we introduced a new documentation file of the strains and their synonyms. Many new database cross-references were introduced and we started to make use of Digital Object Identifiers. We also achieved in collaboration with the Macromolecular Structure Database group at EBI an improved integration with structural databases by residue level mapping of sequences from the Protein Data Bank entries onto corresponding UniProt entries. For convenient sequence searches we provide the UniRef non-redundant sequence databases. The comprehensive UniParc database stores the complete body of publicly available protein sequence data. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). New releases are published every two weeks.


Subject(s)
Databases, Protein , Proteins/chemistry , Amino Acid Sequence , Proteins/physiology , Systems Integration , User-Computer Interface
19.
Proteomics ; 4(6): 1537-50, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15174124

ABSTRACT

High-throughput proteomic studies produce a wealth of new information regarding post-translational modifications (PTMs). The Swiss-Prot knowledge base is faced with the challenge of including this information in a consistent and structured way, in order to facilitate easy retrieval and promote understanding by biologist expert users as well as computer programs. We are therefore standardizing the annotation of PTM features represented in Swiss-Prot. Indeed, a controlled vocabulary has been associated with every described PTM. In this paper, we present the major update of the feature annotation, and, by showing a few examples, explain how the annotation is implemented and what it means. Mod-Prot, a future companion database of Swiss-Prot, devoted to the biological aspects of PTMs (i.e., general description of the process, identity of the modification enzyme(s), taxonomic range, mass modification) is briefly described. Finally we encourage once again the scientific community (i.e., both individual researchers and database maintainers) to interact with us, so that we can continuously enhance the quality and swiftness of our services.


Subject(s)
Databases, Protein , Protein Processing, Post-Translational , Computational Biology , Databases, Protein/standards , Forecasting , Information Systems , Sequence Analysis, Protein , Systems Integration
20.
Brief Bioinform ; 5(1): 39-55, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15153305

ABSTRACT

We describe some of the aspects of Swiss-Prot that make it unique, explain what are the developments we believe to be necessary for the database to continue to play its role as a focal point of protein knowledge, and provide advice pertinent to the development of high-quality knowledge resources on one aspect or the other of the life sciences.


Subject(s)
Databases, Protein , Software Design , Amino Acid Sequence , Animals , Databases, Protein/history , History, 20th Century , History, 21st Century , Humans , Information Storage and Retrieval , Internet , Proteins/classification , Proteins/genetics , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...