Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537500

ABSTRACT

Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.

2.
Sci Transl Med ; 13(609): eabb3312, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34516825

ABSTRACT

Pathologic skin scarring presents a vast economic and medical burden. Unfortunately, the molecular mechanisms underlying scar formation remain to be elucidated. We used a hypertrophic scarring (HTS) mouse model in which Jun is overexpressed globally or specifically in α-smooth muscle or collagen type I­expressing cells to cause excessive extracellular matrix deposition by skin fibroblasts in the skin after wounding. Jun overexpression triggered dermal fibrosis by modulating distinct fibroblast subpopulations within the wound, enhancing reticular fibroblast numbers, and decreasing lipofibroblasts. Analysis of human scars further revealed that JUN is highly expressed across the wide spectrum of scars, including HTS and keloids. CRISPR-Cas9­mediated JUN deletion in human HTS fibroblasts combined with epigenomic and transcriptomic analysis of both human and mouse HTS fibroblasts revealed that JUN initiates fibrosis by regulating CD36. Blocking CD36 with salvianolic acid B or CD36 knockout model counteracted JUN-mediated fibrosis efficacy in both human fibroblasts and mouse wounds. In summary, JUN is a critical regulator of pathological skin scarring, and targeting its downstream effector CD36 may represent a therapeutic strategy against scarring.


Subject(s)
CD36 Antigens , Cicatrix, Hypertrophic , Proto-Oncogene Proteins c-jun , Skin Diseases , Animals , Cicatrix, Hypertrophic/pathology , Humans , Mice , Skin/pathology , Skin Diseases/pathology
3.
Haematologica ; 105(9): 2240-2249, 2020 09 01.
Article in English | MEDLINE | ID: mdl-33054049

ABSTRACT

ß-thalassemia major (ß-TM) is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of ß-globin chains of hemoglobin, leading to the accumulation of free a-globin chains that aggregate and cause ineffective erythropoiesis. We have previously demonstrated that terminal erythroid maturation requires a transient activation of caspase-3 and that the chaperone Heat Shock Protein 70 (HSP70) accumulates in the nucleus to protect GATA-1 transcription factor from caspase-3 cleavage. This nuclear accumulation of HSP70 is inhibited in human ß-TM erythroblasts due to HSP70 sequestration in the cytoplasm by free a-globin chains, resulting in maturation arrest and apoptosis. Likewise, terminal maturation can be restored by transduction of a nuclear-targeted HSP70 mutant. Here we demonstrate that in normal erythroid progenitors, HSP70 localization is regulated by the exportin-1 (XPO1), and that treatment of ß-thalassemic erythroblasts with an XPO1 inhibitor increased the amount of nuclear HSP70, rescued GATA-1 expression and improved terminal differentiation, thus representing a new therapeutic option to ameliorate ineffective erythropoiesis of ß-TM.


Subject(s)
Karyopherins , Receptors, Cytoplasmic and Nuclear , beta-Thalassemia , Cell Differentiation , Erythroblasts , Erythropoiesis , Humans , Karyopherins/genetics , Receptors, Cytoplasmic and Nuclear/genetics , beta-Thalassemia/drug therapy , beta-Thalassemia/genetics , Exportin 1 Protein
4.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31799629

ABSTRACT

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Subject(s)
Anemia, Diamond-Blackfan/genetics , RNA Processing, Post-Transcriptional/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics , 5' Untranslated Regions/genetics , Adolescent , Adult , Anemia, Diamond-Blackfan/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Child , Erythroid Cells , Female , Humans , Male , Mutation/genetics , RNA Precursors/genetics , RNA, Messenger/genetics , Exome Sequencing
5.
Blood ; 133(12): 1358-1370, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30700418

ABSTRACT

Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.


Subject(s)
Anemia, Diamond-Blackfan/pathology , Cell Differentiation , Erythroid Cells/pathology , GATA1 Transcription Factor/metabolism , Globins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heme/metabolism , Anemia, Diamond-Blackfan/metabolism , Cell Proliferation , Cells, Cultured , Erythroid Cells/metabolism , Female , Follow-Up Studies , Haploinsufficiency , Humans , Infant , Infant, Newborn , Male , Mutation , Phenotype , Prognosis , RNA, Small Interfering , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
6.
Haematologica ; 103(6): 949-958, 2018 06.
Article in English | MEDLINE | ID: mdl-29599205

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure disorder linked predominantly to ribosomal protein gene mutations. Here the European DBA consortium reports novel mutations identified in the RPL15 gene in 6 unrelated individuals diagnosed with DBA. Although point mutations have not been previously reported for RPL15, we identified 4 individuals with truncating mutations p.Tyr81* (in 3 of 4) and p.Gln29*, and 2 with missense variants p.Leu10Pro and p.Lys153Thr. Notably, 75% (3 of 4) of truncating mutation carriers manifested with severe hydrops fetalis and required intrauterine transfusions. Even more remarkable is the observation that the 3 carriers of p.Tyr81* mutation became treatment-independent between four and 16 months of life and maintained normal blood counts until their last follow up. Genetic reversion at the DNA level as a potential mechanism of remission was not observed in our patients. In vitro studies revealed that cells carrying RPL15 mutations have pre-rRNA processing defects, reduced 60S ribosomal subunit formation, and severe proliferation defects. Red cell culture assays of RPL15-mutated primary erythroblast cells also showed a severe reduction in cell proliferation, delayed erythroid differentiation, elevated TP53 activity, and increased apoptosis. This study identifies a novel subgroup of DBA with mutations in the RPL15 gene with an unexpected high rate of hydrops fetalis and spontaneous, long-lasting remission.


Subject(s)
Anemia, Diamond-Blackfan/complications , Anemia, Diamond-Blackfan/genetics , Hydrops Fetalis/diagnosis , Hydrops Fetalis/etiology , Mutation , Pregnancy Complications, Hematologic , Ribosomal Proteins/genetics , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/therapy , Apoptosis/genetics , Biomarkers , Cell Differentiation/genetics , Cell Line , Cell Proliferation , DNA Mutational Analysis , Erythrocyte Indices , Female , Genes, p53 , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Male , Pedigree , Phenotype , Pregnancy , Protein Biosynthesis
7.
Blood Adv ; 1(22): 1959-1976, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29296843

ABSTRACT

Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome that exhibits an erythroid-specific phenotype. In at least 70% of cases, DBA is related to a haploinsufficient germ line mutation in a ribosomal protein (RP) gene. Additional cases have been associated with mutations in GATA1. We have previously established that the RPL11+/Mut phenotype is more severe than RPS19+/Mut phenotype because of delayed erythroid differentiation and increased apoptosis of RPL11+/Mut erythroid progenitors. The HSP70 protein is known to protect GATA1, the major erythroid transcription factor, from caspase-3 mediated cleavage during normal erythroid differentiation. Here, we show that HSP70 protein expression is dramatically decreased in RPL11+/Mut erythroid cells while being preserved in RPS19+/Mut cells. The decreased expression of HSP70 in RPL11+/Mut cells is related to an enhanced proteasomal degradation of polyubiquitinylated HSP70. Restoration of HSP70 expression level in RPL11+/Mut cells reduces p53 activation and rescues the erythroid defect in DBA. These results suggest that HSP70 plays a key role in determining the severity of the erythroid phenotype in RP-mutation-dependent DBA.

8.
PLoS Genet ; 10(5): e1004371, 2014.
Article in English | MEDLINE | ID: mdl-24875531

ABSTRACT

Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.


Subject(s)
Anemia, Diamond-Blackfan/genetics , Bone Marrow Diseases/genetics , Exocrine Pancreatic Insufficiency/genetics , Insulin/metabolism , Lipomatosis/genetics , Ribosomal Protein S6 Kinases/genetics , Ribosomal Proteins/metabolism , Anemia, Diamond-Blackfan/pathology , Animals , Autophagy/genetics , Bone Marrow Diseases/pathology , Erythropoiesis/genetics , Exocrine Pancreatic Insufficiency/pathology , Gene Expression Regulation, Developmental , Humans , Insulin/genetics , Lipomatosis/pathology , Mutation , Ribosomal Protein S6 Kinases/antagonists & inhibitors , Ribosomal Proteins/genetics , Shwachman-Diamond Syndrome , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL