Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Genome Biol ; 25(1): 128, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773499

ABSTRACT

BACKGROUND: Cellular iron homeostasis is regulated by iron regulatory proteins (IRP1 and IRP2) that sense iron levels (and other metabolic cues) and modulate mRNA translation or stability via interaction with iron regulatory elements (IREs). IRP2 is viewed as the primary regulator in the liver, yet our previous datasets showing diurnal rhythms for certain IRE-containing mRNAs suggest a nuanced temporal control mechanism. The purpose of this study is to gain insights into the daily regulatory dynamics across IRE-bearing mRNAs, specific IRP involvement, and underlying systemic and cellular rhythmicity cues in mouse liver. RESULTS: We uncover high-amplitude diurnal oscillations in the regulation of key IRE-containing transcripts in the liver, compatible with maximal IRP activity at the onset of the dark phase. Although IRP2 protein levels also exhibit some diurnal variations and peak at the light-dark transition, ribosome profiling in IRP2-deficient mice reveals that maximal repression of target mRNAs at this timepoint still occurs. We further find that diurnal regulation of IRE-containing mRNAs can continue in the absence of a functional circadian clock as long as feeding is rhythmic. CONCLUSIONS: Our findings suggest temporally controlled redundancy in IRP activities, with IRP2 mediating regulation of IRE-containing transcripts in the light phase and redundancy, conceivably with IRP1, at dark onset. Moreover, we highlight the significance of feeding-associated signals in driving rhythmicity. Our work highlights the dynamic nature and regulatory complexity in a metabolic pathway that had previously been considered well-understood.


Subject(s)
Circadian Rhythm , Iron Regulatory Protein 1 , Iron Regulatory Protein 2 , Iron , Liver , RNA, Messenger , Animals , Iron Regulatory Protein 1/metabolism , Iron Regulatory Protein 1/genetics , Iron Regulatory Protein 2/metabolism , Iron Regulatory Protein 2/genetics , Circadian Rhythm/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Mice , Liver/metabolism , Iron/metabolism , Gene Expression Regulation , Response Elements , Mice, Inbred C57BL , Male , Feeding Behavior
2.
Science ; 382(6675): eadf3208, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38060659

ABSTRACT

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Subject(s)
Aging , MAP Kinase Kinase Kinase 3 , Obesity , Reactive Oxygen Species , Ribosomes , Stress, Physiological , Animals , Mice , Aging/metabolism , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Kinase Kinase 3/metabolism , Obesity/metabolism , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Ribosomes/metabolism , Zebrafish , Mice, Knockout
3.
Science ; 380(6644): 531-536, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37141370

ABSTRACT

The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.


Subject(s)
Codon, Terminator , Mitochondria , Peptide Chain Termination, Translational , Peptide Termination Factors , Humans , Cryoelectron Microscopy , Mitochondria/genetics , Mitochondria/metabolism , Peptide Termination Factors/chemistry , Protein Conformation
4.
Sci Adv ; 9(2): eade2828, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36638184

ABSTRACT

Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology.


Subject(s)
Circadian Clocks , Nonsense Mediated mRNA Decay , Animals , Mice , Circadian Clocks/genetics , Codon, Nonsense/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
5.
Cell Metab ; 34(12): 2036-2046.e8, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36384144

ABSTRACT

Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.


Subject(s)
MAP Kinase Kinase Kinases , Protein Biosynthesis , Ribosomes , Stress, Physiological , Animals , Male , Mice , MAP Kinase Kinase Kinases/metabolism
6.
EMBO Rep ; 23(9): e54762, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35899551

ABSTRACT

MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression via direct base pairing with their mRNA targets. Previous works suggest that up to 60% of mammalian transcripts might be subject to miRNA-mediated regulation, but it remains largely unknown which fraction of these interactions are functional in a specific cellular context. Here, we integrate transcriptome data from a set of miRNA-depleted mouse embryonic stem cell (mESC) lines with published miRNA interaction predictions and AGO-binding profiles. Using this integrative approach, combined with molecular validation data, we present evidence that < 10% of expressed genes are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of the stem cell-specific miR-290-295 cluster target genes identify TFAP4 as an important transcription factor for early development. The extensive datasets developed in this study will support the development of improved predictive models for miRNA-mRNA functional interactions.


Subject(s)
MicroRNAs , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Mammals/genetics , Mammals/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Methods Mol Biol ; 2482: 217-242, 2022.
Article in English | MEDLINE | ID: mdl-35610430

ABSTRACT

There is high interest in investigating the daily dynamics of gene expression in mammalian organs, for example, in liver. Such studies help to elucidate how and with what kinetics peripheral clocks integrate circadian signals from the suprachiasmatic nucleus, which harbors the circadian master pacemaker, with other systemic and environmental cues, such as those associated with feeding and hormones. Organ sampling around the clock, followed by the analysis of RNA and/or proteins, is the most commonly used procedure in assessing rhythmic gene expression. However, this method requires large cohorts of animals and is only applicable to behaviorally rhythmic animals whose phases are known. Real-time recording of gene expression rhythms using luciferase reporters has emerged as a powerful method to acquire continuous, high-resolution datasets from freely moving individual mice. Here, we share our experience and protocols with this technique, using the RT-Biolumicorder setup.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression , Gene Expression Regulation , Liver/metabolism , Luciferases/metabolism , Mammals/genetics , Mice , Suprachiasmatic Nucleus/metabolism
8.
Elife ; 102021 09 20.
Article in English | MEDLINE | ID: mdl-34542406

ABSTRACT

Circular RNAs (circRNAs) are found across eukaryotes and can function in post-transcriptional gene regulation. Their biogenesis through a circle-forming backsplicing reaction is facilitated by reverse-complementary repetitive sequences promoting pre-mRNA folding. Orthologous genes from which circRNAs arise, overall contain more strongly conserved splice sites and exons than other genes, yet it remains unclear to what extent this conservation reflects purifying selection acting on the circRNAs themselves. Our analyses of circRNA repertoires from five species representing three mammalian lineages (marsupials, eutherians: rodents, primates) reveal that surprisingly few circRNAs arise from orthologous exonic loci across all species. Even the circRNAs from orthologous loci are associated with young, recently active and species-specific transposable elements, rather than with common, ancient transposon integration events. These observations suggest that many circRNAs emerged convergently during evolution - as a byproduct of splicing in orthologs prone to transposon insertion. Overall, our findings argue against widespread functional circRNA conservation.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , RNA, Circular/genetics , Animals , Databases, Genetic , Gene Expression Regulation , Genetic Loci , Humans , RNA Splicing , RNA, Circular/metabolism , Species Specificity
9.
Commun Biol ; 4(1): 715, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112887

ABSTRACT

While SARS-CoV-2 is causing modern human history's most serious health crisis and upending our way of life, clinical and basic research on the virus is advancing rapidly, leading to fascinating discoveries. Two studies have revealed how the viral virulence factor, nonstructural protein 1 (Nsp1), binds human ribosomes to inhibit host cell translation. Here, we examine the main conclusions on the molecular activity of Nsp1 and its role in suppressing innate immune responses. We discuss different scenarios potentially explaining how the viral RNA can bypass its own translation blockage and speculate on the suitability of Nsp1 as a therapeutic target.


Subject(s)
Host-Pathogen Interactions/physiology , Ribosomes/virology , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/metabolism , 5' Untranslated Regions , Gene Expression Regulation, Viral , Humans , Immunity, Innate , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , SARS-CoV-2/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
10.
Science ; 372(6548): 1306-1313, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34029205

ABSTRACT

Programmed ribosomal frameshifting is a key event during translation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome that allows synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here, we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal messenger RNA (mRNA) channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.


Subject(s)
Frameshifting, Ribosomal , RNA, Viral/genetics , Ribosomes/ultrastructure , SARS-CoV-2/genetics , Viral Proteins/biosynthesis , Animals , Antiviral Agents/pharmacology , Codon, Terminator , Coronavirus RNA-Dependent RNA Polymerase/biosynthesis , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/genetics , Cryoelectron Microscopy , Fluoroquinolones/pharmacology , Frameshifting, Ribosomal/drug effects , Genome, Viral , Humans , Image Processing, Computer-Assisted , Models, Molecular , Nucleic Acid Conformation , Open Reading Frames , Protein Folding , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Replication/drug effects
11.
Nature ; 588(7839): 642-647, 2020 12.
Article in English | MEDLINE | ID: mdl-33177713

ABSTRACT

Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifically counterbalanced global dosage reductions during the evolution of sex chromosomes and the effects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of buffering, some genes evolved faster at the translatome layer-potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is reflected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs.


Subject(s)
Evolution, Molecular , Mammals/genetics , Protein Biosynthesis , Transcriptome/genetics , Animals , Brain/metabolism , Chickens/genetics , Female , Genes, X-Linked/genetics , Humans , Liver/metabolism , Macaca/genetics , Male , Mice , Opossums/genetics , Organ Specificity/genetics , Platypus/genetics , Protein Biosynthesis/genetics , RNA-Seq , Ribosomes/metabolism , Sex Chromosomes/genetics , Species Specificity , Spermatogenesis/genetics , Testis/metabolism , Up-Regulation
12.
Genome Res ; 30(7): 985-999, 2020 07.
Article in English | MEDLINE | ID: mdl-32703885

ABSTRACT

Translation initiation is the major regulatory step defining the rate of protein production from an mRNA. Meanwhile, the impact of nonuniform ribosomal elongation rates is largely unknown. Using a modified ribosome profiling protocol based on footprints from two closely packed ribosomes (disomes), we have mapped ribosomal collisions transcriptome-wide in mouse liver. We uncover that the stacking of an elongating onto a paused ribosome occurs frequently and scales with translation rate, trapping ∼10% of translating ribosomes in the disome state. A distinct class of pause sites is indicative of deterministic pausing signals. Pause site association with specific amino acids, peptide motifs, and nascent polypeptide structure is suggestive of programmed pausing as a widespread mechanism associated with protein folding. Evolutionary conservation at disome sites indicates functional relevance of translational pausing. Collectively, our disome profiling approach allows unique insights into gene regulation occurring at the step of translation elongation.


Subject(s)
Peptide Chain Elongation, Translational , Ribosomes/metabolism , Transcriptome , Amino Acids , Animals , Codon , Codon Usage , Evolution, Molecular , Mice , Peptides/chemistry , Protein Biosynthesis , Protein Sorting Signals , Protein Structure, Secondary , Sequence Analysis, RNA
13.
J Mol Biol ; 432(12): 3483-3497, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32246961

ABSTRACT

A large part of mammalian physiology and behaviour shows regular daily variations. This temporal organisation is driven by the activity of an endogenous circadian clock, whose molecular basis consists of diurnal waves in gene expression. Circadian transcription is the major driver of these rhythms, yet post-transcriptional mechanisms, some of which occur in response to systemic cues and in a tissue-specific fashion, have central roles in ultimately establishing the oscillatory gene expression programme as well. Regulatory control that occurs at the level of translation is emerging as an important player in the generation and modulation of protein accumulation rhythms. As a mechanism, translation lies at a privileged position to integrate genetically encoded rhythmic signals with other, external and internal stimuli, including nutrient-derived cues. In this review, we summarise our current knowledge of how diurnal control of translation affects both bulk protein levels and gene-specific protein biosynthesis. We discuss mechanisms of regulation, in particular with regard to the complex interplay between circadian cycles and feeding/fasting cycles, as well as emerging roles for upstream open reading frames in clock control.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Protein Biosynthesis/genetics , Transcription, Genetic , Animals , Humans , Mammals/genetics
14.
Mol Cell ; 77(6): 1222-1236.e13, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32048998

ABSTRACT

RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.


Subject(s)
Apoptosis Regulatory Proteins/physiology , DNA-Binding Proteins/physiology , Exoribonucleases/physiology , Mouse Embryonic Stem Cells/metabolism , Protein Biosynthesis , RNA Helicases/physiology , RNA Stability , RNA, Messenger/metabolism , Animals , CRISPR-Cas Systems , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Open Reading Frames , Proto-Oncogene Proteins/physiology , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribosomes/genetics , Ribosomes/metabolism
15.
Chimia (Aarau) ; 73(6): 391-394, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31118121

ABSTRACT

The use of in vitro transcribed messenger RNA (ivt mRNA) for vaccination, gene therapy and cell reprograming has become increasingly popular in research and medicine. This method can be used in vitro (transfected in cells) or administered naked or formulated (lipoplexes, polyplexes, and lipopolyplexes that deliver the RNA to specific organs, such as immune structures, the lung or liver) and is designed to be an immunostimulatory or immunosilent agent. This vector contains several functional regions (Cap, 5' untranslated region, open reading frame, 3' untranslated region and poly-A tail) that can all be optimised to generate a highly efficacious ivt mRNA. In this study, we review these aspects and report on the effect of the ivt mRNA purification method on the functionality of this synthetic transient genetic vector.


Subject(s)
Genetic Therapy , RNA, Messenger/genetics , Research , 3' Untranslated Regions
16.
Nucleic Acids Res ; 47(10): 5193-5209, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30982898

ABSTRACT

The non-canonical initiation factor DENR promotes translation reinitiation on mRNAs harbouring upstream open reading frames (uORFs). Moreover, DENR depletion shortens circadian period in mouse fibroblasts, suggesting involvement of uORF usage and reinitiation in clock regulation. To identify DENR-regulated translation events transcriptome-wide and, in particular, specific core clock transcripts affected by this mechanism, we have used ribosome profiling in DENR-deficient NIH3T3 cells. We uncovered 240 transcripts with altered translation rate, and used linear regression analysis to extract 5' UTR features predictive of DENR dependence. Among core clock genes, we identified Clock as a DENR target. Using Clock 5' UTR mutants, we mapped the specific uORF through which DENR acts to regulate CLOCK protein biosynthesis. Notably, these experiments revealed an alternative downstream start codon, likely representing the bona fide CLOCK N-terminus. Our findings provide insights into uORF-mediated translational regulation that can regulate the mammalian circadian clock and gene expression at large.


Subject(s)
CLOCK Proteins/metabolism , Circadian Rhythm , Eukaryotic Initiation Factors/metabolism , Fibroblasts/metabolism , Open Reading Frames , 5' Untranslated Regions , Animals , CLOCK Proteins/genetics , Cloning, Molecular , Codon, Initiator , Eukaryotic Initiation Factors/genetics , Gene Expression Regulation , HEK293 Cells , Humans , Luciferases/metabolism , Mice , Mutation , NIH 3T3 Cells , RNA, Messenger/metabolism , Ribosomes/metabolism
17.
Dev Cell ; 44(1): 7-9, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29316442

ABSTRACT

Circadian clocks help control the unfolded protein response (UPR). In a recent issue of Nature Cell Biology, Bu et al. (2017) show that the interaction is reciprocal, with miRNA-211 providing a signal from the UPR to the clock component BMAL1, affecting circadian timing, global translational control, and cancer cell survival.


Subject(s)
ARNTL Transcription Factors/genetics , Circadian Clocks , Circadian Rhythm , Humans , Protein Processing, Post-Translational , Unfolded Protein Response
18.
J Biol Rhythms ; 32(5): 380-393, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29098954

ABSTRACT

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.


Subject(s)
Circadian Rhythm/genetics , Genome , Genomics , Statistics as Topic/methods , Biostatistics , Computational Biology/methods , Genomics/statistics & numerical data , Humans , Metabolomics , Proteomics , Software , Systems Biology
19.
Genome Biol ; 18(1): 116, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28622766

ABSTRACT

BACKGROUND: The daily gene expression oscillations that underlie mammalian circadian rhythms show striking differences between tissues and involve post-transcriptional regulation. Both aspects remain poorly understood. We have used ribosome profiling to explore the contribution of translation efficiency to temporal gene expression in kidney and contrasted our findings with liver data available from the same mice. RESULTS: Rhythmic translation of constantly abundant messenger RNAs (mRNAs) affects largely non-overlapping transcript sets with distinct phase clustering in the two organs. Moreover, tissue differences in translation efficiency modulate the timing and amount of protein biosynthesis from rhythmic mRNAs, consistent with organ specificity in clock output gene repertoires and rhythmicity parameters. Our comprehensive datasets provided insights into translational control beyond temporal regulation. Between tissues, many transcripts show differences in translation efficiency, which are, however, of markedly smaller scale than mRNA abundance differences. Tissue-specific changes in translation efficiency are associated with specific transcript features and, intriguingly, globally counteracted and compensated transcript abundance variations, leading to higher similarity at the level of protein biosynthesis between both tissues. CONCLUSIONS: We show that tissue specificity in rhythmic gene expression extends to the translatome and contributes to define the identities, the phases and the expression levels of rhythmic protein biosynthesis. Moreover, translational compensation of transcript abundance divergence leads to overall higher similarity at the level of protein production across organs. The unique resources provided through our study will serve to address fundamental questions of post-transcriptional control and differential gene expression in vivo.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Protein Biosynthesis , Transcriptome/genetics , Animals , Gene Expression Regulation, Developmental , Kidney/metabolism , Liver/metabolism , Mice , RNA, Messenger/genetics , Ribosomes/genetics
20.
Cell ; 169(4): 651-663.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28475894

ABSTRACT

The liver plays a pivotal role in metabolism and xenobiotic detoxification, processes that must be particularly efficient when animals are active and feed. A major question is how the liver adapts to these diurnal changes in physiology. Here, we show that, in mice, liver mass, hepatocyte size, and protein levels follow a daily rhythm, whose amplitude depends on both feeding-fasting and light-dark cycles. Correlative evidence suggests that the daily oscillation in global protein accumulation depends on a similar fluctuation in ribosome number. Whereas rRNA genes are transcribed at similar rates throughout the day, some newly synthesized rRNAs are polyadenylated and degraded in the nucleus in a robustly diurnal fashion with a phase opposite to that of ribosomal protein synthesis. Based on studies with cultured fibroblasts, we propose that rRNAs not packaged into complete ribosomal subunits are polyadenylated by the poly(A) polymerase PAPD5 and degraded by the nuclear exosome.


Subject(s)
Liver/cytology , Liver/physiology , Ribosomes/metabolism , Animals , Cell Nucleus/metabolism , Cell Size , Circadian Rhythm , Exosomes/metabolism , Hepatocytes/cytology , Hepatocytes/physiology , Male , Mice , Mice, Inbred C57BL , Photoperiod , RNA Processing, Post-Transcriptional , RNA, Ribosomal/genetics , Ribosomal Proteins/genetics , Ribosomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...