Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37367472

ABSTRACT

Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends on several factors. Several studies showed that the tumour response to radiation differs from one patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions between the tumour microenvironment and healthy cells. To understand these interactions, five major biologic concepts called the "5 Rs" have emerged. These concepts include reoxygenation, DNA damage repair, cell cycle redistribution, cellular radiosensitivity and cellular repopulation. In this study, we used a multi-scale model, which included the five Rs of radiotherapy, to predict the effects of radiation on tumour growth. In this model, the oxygen level was varied in both time and space. When radiotherapy was given, the sensitivity of cells depending on their location in the cell cycle was taken in account. This model also considered the repair of cells by giving a different probability of survival after radiation for tumour and normal cells. Here, we developed four fractionation protocol schemes. We used simulated and positron emission tomography (PET) imaging with the hypoxia tracer 18F-flortanidazole (18F-HX4) images as input data of our model. In addition, tumour control probability curves were simulated. The result showed the evolution of tumours and normal cells. The increase in the cell number after radiation was seen in both normal and malignant cells, which proves that repopulation was included in this model. The proposed model predicts the tumour response to radiation and forms the basis for a more patient-specific clinical tool where related biological data will be included.

2.
Phys Med ; 83: 108-121, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33765601

ABSTRACT

Over the last decade there has been an extensive evolution in the Artificial Intelligence (AI) field. Modern radiation oncology is based on the exploitation of advanced computational methods aiming to personalization and high diagnostic and therapeutic precision. The quantity of the available imaging data and the increased developments of Machine Learning (ML), particularly Deep Learning (DL), triggered the research on uncovering "hidden" biomarkers and quantitative features from anatomical and functional medical images. Deep Neural Networks (DNN) have achieved outstanding performance and broad implementation in image processing tasks. Lately, DNNs have been considered for radiomics and their potentials for explainable AI (XAI) may help classification and prediction in clinical practice. However, most of them are using limited datasets and lack generalized applicability. In this study we review the basics of radiomics feature extraction, DNNs in image analysis, and major interpretability methods that help enable explainable AI. Furthermore, we discuss the crucial requirement of multicenter recruitment of large datasets, increasing the biomarkers variability, so as to establish the potential clinical value of radiomics and the development of robust explainable AI models.


Subject(s)
Artificial Intelligence , Deep Learning , Image Processing, Computer-Assisted , Machine Learning , Multicenter Studies as Topic , Neural Networks, Computer
3.
IEEE Trans Med Imaging ; 37(4): 871-880, 2018 04.
Article in English | MEDLINE | ID: mdl-29610067

ABSTRACT

We present a multi-scale approach of tumor modeling in order to predict its evolution during radiotherapy. Within this context we focus on three different scales of tumor modeling: microscopic (individual cells in a voxel), mesoscopic (population of cells in a voxel) and macroscopic (whole tumor), with transition interfaces between these three scales. At the cellular level, the description is based on phase transfer probabilities in the cellular cycle. At the mesoscopic scale we represent populations of cells according to different stages in a cell cycle. Finally, at the macroscopic scale, the tumor description is based on the use of FDG PET image voxels. These three scales exist naturally: biological data are collected at the macroscopic scale, but the pathological behavior of the tumor is based on an abnormal cell-cycle at the microscopic scale. On the other hand, the introduction of a mesoscopic scale is essential in order to reduce the gap between the two extreme, in terms of resolution, description levels. It also reduces the computational burden of simulating a large number of individual cells. As an application of the proposed multi-scale model, we simulate the effect of oxygen on tumor evolution during radiotherapy. Two consecutive FDG PET images of 17 rectal cancer patients undergoing radiotherapy are used to simulate the tumor evolution during treatment. The simulated results are compared with those obtained on a third FDG PET image acquired two weeks after the beginning of the treatment.


Subject(s)
Models, Biological , Oxygen/metabolism , Rectal Neoplasms/metabolism , Rectal Neoplasms/radiotherapy , Cell Cycle/physiology , Cell Hypoxia/physiology , Databases, Factual , Humans , Neoplastic Processes , Positron-Emission Tomography , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/physiopathology
4.
Biosystems ; 75(1-3): 3-14, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15245800

ABSTRACT

One of the main issues in Systems Biology is to deal with semantic data integration. Previously, we examined the requirements for a reference conceptual model to guide semantic integration based on the systemic principles. In the present paper, we examine the usefulness of the Unified Modelling Language (UML) to describe and specify biological systems and processes. This makes unambiguous representations of biological systems, which would be suitable for translation into mathematical and computational formalisms, enabling analysis, simulation and prediction of these systems behaviours.


Subject(s)
Information Storage and Retrieval/methods , Models, Theoretical , Programming Languages , Software Design , Systems Biology/methods , Epigenesis, Genetic , Genetic Phenomena , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...