Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Front Aging Neurosci ; 15: 1170879, 2023.
Article in English | MEDLINE | ID: mdl-37711996

ABSTRACT

Background: Sustained environmental enrichment (EE) through a variety of leisure activities may decrease the risk of developing Alzheimer's disease. This cross-sectional cohort study investigated the association between long-term EE in young adulthood through middle life and microstructure of fiber tracts associated with the memory system in older adults. Methods: N = 201 cognitively unimpaired participants (≥ 60 years of age) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) baseline cohort were included. Two groups of participants with higher (n = 104) or lower (n = 97) long-term EE were identified, using the self-reported frequency of diverse physical, intellectual, and social leisure activities between the ages 13 to 65. White matter (WM) microstructure was measured by fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-term EE groups (lower/higher) were compared with adjustment for potential confounders, such as education, crystallized intelligence, and socio-economic status. Results: Reported participation in higher long-term EE was associated with greater fornix microstructure, as indicated by higher FA (standardized ß = 0.117, p = 0.033) and lower MD (ß = -0.147, p = 0.015). Greater fornix microstructure was indirectly associated (FA: unstandardized B = 0.619, p = 0.038; MD: B = -0.035, p = 0.026) with better memory function through higher long-term EE. No significant effects were found for the other WM tracts. Conclusion: Our findings suggest that sustained participation in a greater variety of leisure activities relates to preserved WM microstructure in the memory system in older adults. This could be facilitated by the multimodal stimulation associated with the engagement in a physically, intellectually, and socially enriched lifestyle. Longitudinal studies will be needed to support this assumption.

2.
Cortex ; 162: 26-37, 2023 05.
Article in English | MEDLINE | ID: mdl-36965337

ABSTRACT

Childhood mild traumatic brain injury (mTBI) is associated with elevated risk of developing social problems, which may be underpinned by changes in the structural developmental trajectory of the social brain, a network of cortical regions supporting social cognition and behavior. However, limited sample sizes and cross-sectional designs generally used in neuroimaging studies of pediatric TBI have prevented explorations of this hypothesis. This longitudinal retrospective study examined the development of parent-reported social problems and cortical thickness in social brain regions following childhood mTBI using data from the large population-based Adolescent Brain Cognitive Development (ABCD) Study. Two-group latent change score models revealed different developmental trajectories from ages 10-12 years in the level of social problems between children with (n = 345) and without (n = 7,089) mTBI. Children with mTBI showed higher, but non-clinical, levels of social problems than controls at age 10. Then, social problems decreased over 2 years, but still remained higher, but non-clinical, than in controls in which they stayed stable. Both groups showed similar decreases in social brain cortical thickness between ages 10 and 12 years. Further studies providing detailed information on the injury mechanism and acute symptoms are needed to better understand individual differences in social functioning and brain development in pediatric TBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adolescent , Child , Humans , Brain Concussion/diagnostic imaging , Brain Concussion/psychology , Retrospective Studies , Cross-Sectional Studies , Brain/diagnostic imaging , Social Problems , Brain Injuries, Traumatic/diagnostic imaging
3.
J Neurol Sci ; 445: 120516, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36702068

ABSTRACT

INTRODUCTION: Neurological soft signs (NSS) are minor deviations from the norm in motor performance that are commonly assessed using neurological examinations. NSS may be of clinical relevance for evaluating the developmental status of adolescents. Here we investigate whether quantitative force plate measures may add relevant information to observer-based neurological examinations. METHODS: Male adolescent athletes (n = 141) aged 13-16 years from three European sites underwent a neurological examination including 28 tests grouped into six functional clusters. The performance of tests and functional clusters was rated as optimal/non-optimal resulting in NSS+/NSS- groups and a continuous total NSS score. Participants performed a postural control task on a Balance Tracking System measured as path length, root mean square and sway area. ANCOVAs were applied to test for group differences in postural control between the NSS+ and NSS- group, and between optimal/non-optimal performance on a cluster- and test-level. Moreover, we tested for correlations between the total NSS score and postural control variables. RESULTS: There was no significant overall difference between the NSS+ and NSS- group in postural control. However, non-optimal performing participants in the diadochokinesis test swayed significantly more in the medial-lateral direction than optimal performing participants. Moreover, a lower total NSS score was associated with reduced postural control in the medial-lateral direction. CONCLUSION: Our findings demonstrate that NSS are related to postural control in adolescent athletes. Thus, force plate measures may add a quantitative, objective measurement of postural control to observer-based qualitative assessments, and thus, may complement clinical testing.


Subject(s)
Athletes , Postural Balance , Humans , Male , Adolescent , Neurologic Examination
4.
Cereb Cortex ; 33(9): 5547-5556, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36424865

ABSTRACT

Neurological soft signs (NSS) are minor deviations in motor performance. During childhood and adolescence, NSS are examined for functional motor phenotyping to describe development, to screen for comorbidities, and to identify developmental vulnerabilities. Here, we investigate underlying brain structure alterations in association with NSS in physically trained adolescents. Male adolescent athletes (n = 136, 13-16 years) underwent a standardized neurological examination including 28 tests grouped into 6 functional clusters. Non-optimal performance in at least 1 cluster was rated as NSS (NSS+ group). Participants underwent T1- and diffusion-weighted magnetic resonance imaging. Cortical volume, thickness, and local gyrification were calculated using Freesurfer. Measures of white matter microstructure (Free-water (FW), FW-corrected fractional anisotropy (FAt), axial and radial diffusivity (ADt, RDt)) were calculated using tract-based spatial statistics. General linear models with age and handedness as covariates were applied to assess differences between NSS+ and NSS- group. We found higher gyrification in a large cluster spanning the left superior frontal and parietal areas, and widespread lower FAt and higher RDt compared with the NSS- group. This study shows that NSS in adolescents are associated with brain structure alterations. Underlying mechanisms may include alterations in synaptic pruning and axon myelination, which are hallmark processes of brain maturation.


Subject(s)
Magnetic Resonance Imaging , White Matter , Humans , Male , Adolescent , Magnetic Resonance Imaging/methods , Brain , White Matter/pathology , Diffusion Magnetic Resonance Imaging , Neurologic Examination
5.
Front Psychol ; 13: 945709, 2022.
Article in English | MEDLINE | ID: mdl-36092026

ABSTRACT

Regular musical activity as a complex multimodal lifestyle activity is proposed to be protective against age-related cognitive decline and Alzheimer's disease. This cross-sectional study investigated the association and interplay between musical instrument playing during life, multi-domain cognitive abilities and brain morphology in older adults (OA) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Participants reporting having played a musical instrument across three life periods (n = 70) were compared to controls without a history of musical instrument playing (n = 70), well-matched for reserve proxies of education, intelligence, socioeconomic status and physical activity. Participants with musical activity outperformed controls in global cognition, working memory, executive functions, language, and visuospatial abilities, with no effects seen for learning and memory. The musically active group had greater gray matter volume in the somatosensory area, but did not differ from controls in higher-order frontal, temporal, or hippocampal volumes. However, the association between gray matter volume in distributed frontal-to-temporal regions and cognitive abilities was enhanced in participants with musical activity compared to controls. We show that playing a musical instrument during life relates to better late-life cognitive abilities and greater brain capacities in OA. Musical activity may serve as a multimodal enrichment strategy that could help preserve cognitive and brain health in late life. Longitudinal and interventional studies are needed to support this notion.

6.
Front Integr Neurosci ; 16: 847824, 2022.
Article in English | MEDLINE | ID: mdl-35558154

ABSTRACT

Background: Poor vascular health may impede brain functioning in older adults, thus possibly increasing the risk of cognitive decline and Alzheimer's disease (AD). The emerging link between vascular risk factors (VRF) and longitudinal decline in resting-state functional connectivity (RSFC) within functional brain networks needs replication and further research in independent cohorts. Method: We examined 95 non-demented older adults using the IMAP+ cohort (Caen, France). VRF were assessed at baseline through systolic and diastolic blood pressure, body-mass-index, and glycated hemoglobin (HbA1c) levels. Brain pathological burden was measured using white matter hyperintensity (WMH) volumes, derived from FLAIR images, and cortical ß-Amyloid (Aß) deposition, derived from florbetapir-PET imaging. RSFC was estimated from functional MRI scans within canonical brain networks at baseline and up to 3 years of follow-up. Linear mixed-effects models evaluated the independent predictive value of VRF on longitudinal changes in network-specific and global RSFC as well as a potential association between these RSFC changes and cognitive decline. Results: We replicate that RSFC increased over time in global RSFC and in the default-mode, salience/ventral-attention and fronto-parietal networks. In contrast, higher diastolic blood pressure levels were independently associated with a decrease of RSFC over time in the default-mode, salience/ventral-attention, and fronto-parietal networks. Moreover, higher HbA1c levels were independently associated with a reduction of the observed RSFC increase over time in the salience/ventral-attention network. Both of these associations were independent of brain pathology related to Aß load and WMH volumes. The VRF-related changes in RSFC over time were not significantly associated with longitudinal changes in cognitive performance. Conclusion: Our longitudinal findings corroborate that VRF promote RSFC alterations over time within higher-order brain networks, irrespective of pathological brain burden. Altered RSFC in large-scale cognitive networks may eventually increase the vulnerability to aging and AD.

7.
J Parkinsons Dis ; 12(1): 229-241, 2022.
Article in English | MEDLINE | ID: mdl-34690149

ABSTRACT

BACKGROUND: Rapid-eye-movement sleep behavior disorder (RBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. More than a third of RBD patients have mild cognitive impairment (MCI), but their specific structural brain alterations remain poorly understood. OBJECTIVE: This study aimed to investigate the local deformation and volume of gray and white matter tissue underlying MCI in RBD. METHODS: Fifty-two idiopathic RBD patients, including 17 with MCI (33%), underwent polysomnography, neuropsychological, neurological, and magnetic resonance imaging assessments. MCI diagnosis was based on a subjective complaint, cognitive impairment on the neuropsychological battery, and preserved daily functioning. Forty-one controls were also included. Deformation-based morphometry (DBM), voxel-based morphometry (VBM), and regional volume analyses of the corpus callosum and cholinergic basal forebrain were performed. Multiple regression models were also computed using anatomical, cognitive (composite z scores), and motor parameters. RESULTS: Globally, patients with MCI displayed a widespread pattern of local deformation and volume atrophy in the cortical (bilateral insula, cingulate cortex, precuneus, frontal, temporal and occipital regions, right angular gyrus, and mid-posterior segment of the corpus callosum) and subcortical (brainstem, corona radiata, basal ganglia, thalamus, amygdala, and right hippocampus) regions compared to patients without MCI (DBM) or controls (DBM and VBM). Moreover, brain deformation (DBM) in patients were associated with lower performance in attention and executive functions, visuospatial abilities, and higher motor symptoms severity. CONCLUSION: The present study identified novel brain structural alterations in RBD patients with MCI which correlated with poorer cognitive performance. These results are consistent with those reported in patients with synucleinopathies-related cognitive impairment.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , REM Sleep Behavior Disorder , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/complications , Cognitive Dysfunction/etiology , Humans , Magnetic Resonance Imaging , Parkinson Disease/complications , REM Sleep Behavior Disorder/complications , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/pathology
8.
Front Psychiatry ; 13: 1010273, 2022.
Article in English | MEDLINE | ID: mdl-36713907

ABSTRACT

Background: White matter hyperintensities (WMH), a biomarker of small vessel disease, are often found in Alzheimer's disease (AD) and their advanced detection and quantification can be beneficial for research and clinical applications. To investigate WMH in large-scale multicenter studies on cognitive impairment and AD, appropriate automated WMH segmentation algorithms are required. This study aimed to compare the performance of segmentation tools and provide information on their application in multicenter research. Methods: We used a pseudo-randomly selected dataset (n = 50) from the DZNE-multicenter observational Longitudinal Cognitive Impairment and Dementia Study (DELCODE) that included 3D fluid-attenuated inversion recovery (FLAIR) images from participants across the cognitive continuum. Performances of top-rated algorithms for automated WMH segmentation [Brain Intensity Abnormality Classification Algorithm (BIANCA), lesion segmentation toolbox (LST), lesion growth algorithm (LGA), LST lesion prediction algorithm (LPA), pgs, and sysu_media] were compared to manual reference segmentation (RS). Results: Across tools, segmentation performance was moderate for global WMH volume and number of detected lesions. After retraining on a DELCODE subset, the deep learning algorithm sysu_media showed the highest performances with an average Dice's coefficient of 0.702 (±0.109 SD) for volume and a mean F1-score of 0.642 (±0.109 SD) for the number of lesions. The intra-class correlation was excellent for all algorithms (>0.9) but BIANCA (0.835). Performance improved with high WMH burden and varied across brain regions. Conclusion: To conclude, the deep learning algorithm, when retrained, performed well in the multicenter context. Nevertheless, the performance was close to traditional methods. We provide methodological recommendations for future studies using automated WMH segmentation to quantify and assess WMH along the continuum of cognitive impairment and AD dementia.

9.
Front Neurol ; 12: 745770, 2021.
Article in English | MEDLINE | ID: mdl-34858312

ABSTRACT

The brain has a high energy demand but little to no energy stores. Therefore, proper brain function relies on the delivery of glucose and oxygen by the cerebral vasculature. The regulation of cerebral blood flow (CBF) occurs at the level of the cerebral capillaries and is driven by a fast and efficient crosstalk between neurons and vessels, a process termed neurovascular coupling (NVC). Experimentally NVC is mainly triggered by sensory stimulation and assessed by measuring either CBF by laser Doppler fluxmetry, laser speckle contrast imaging (LSCI), intrinsic optical imaging, BOLD fMRI, near infrared spectroscopy (NIRS) or functional ultrasound imaging (fUS). Since these techniques have relatively low spatial resolution, diameters of cerebral vessels are mainly assessed by 2-photon microscopy (2-PM). Results of studies on NVC rely on stable animal physiology, high-quality data acquisition, and unbiased data analysis, criteria, which are not easy to achieve. In the current study, we assessed NVC using two different imaging modalities, i.e., LSCI and 2-PM, and analyzed our data using an investigator-independent Matlab-based analysis tool, after manually defining the area of analysis in LSCI and vessels to measure in 2-PM. By investigating NVC in 6-8 weeks, 1-, and 2-year-old mice, we found that NVC was maximal in 1-year old mice and was significantly reduced in aged mice. These findings suggest that NVC is differently affected during the aging process. Most interestingly, specifically pial arterioles, seem to be distinctly affected by the aging. The main finding of our study is that the automated analysis tool works very efficiently in terms of time and accuracy. In fact, the tool reduces the analysis time of one animal from approximately 23 h to about 2 s while basically making no mistakes. In summary, we developed an experimental workflow, which allows us to reliably measure NVC with high spatial and temporal resolution in young and aged mice and to analyze these data in an investigator-independent manner.

10.
J Neurotrauma ; 38(11): 1506-1514, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33724054

ABSTRACT

Episodic memory deficit is a symptom frequently observed after a mild traumatic brain injury (mTBI). However, few studies have investigated the impact of a single and acute mTBI on episodic memory and structural cerebral changes. To do so, we conducted two experiments. In the first, we evaluated verbal episodic memory by using a word recall test, in 52 patients with mTBI (mean age 33.1 [12.2] years) 2-4 weeks after a first mTBI, compared with 54 healthy controls (31.3 [9.2] years) and followed both groups up for 6 months. In the second, we measured hippocampal volume in a subset of 40 participants (20 patients with mTBI, 20 controls) from Experiment 1 using magnetic resonance imaging (MRI; T1-weighted images) and correlated memory performance scores to hippocampal volume. Experiment 1 showed significantly reduced verbal episodic memory within the first month after an mTBI and a tendency for a reduction 6 months later, more pronounced for men. In Experiment 2, patients with mTBI exhibited a generally reduced hippocampal volume; however, we did not observe any linear correlation between hippocampal volume and memory scores. These results suggest that one single mTBI is associated with both episodic memory alteration and reduced volume of the hippocampus in the acute phase. Future studies are needed to elucidate the link between both measures.


Subject(s)
Brain Concussion/pathology , Brain Concussion/psychology , Hippocampus/pathology , Memory Disorders/etiology , Memory, Episodic , Verbal Learning/physiology , Adult , Atrophy , Brain Concussion/diagnostic imaging , Case-Control Studies , Female , Follow-Up Studies , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Memory Disorders/diagnostic imaging , Memory Disorders/pathology , Organ Size , Time Factors , Young Adult
11.
Alzheimers Res Ther ; 13(1): 29, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33461618

ABSTRACT

BACKGROUND: White matter hyperintensities (WMH) are frequently found in Alzheimer's disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aß) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aß burden, glucose hypometabolism, and gray matter volume reduction. METHODS: In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aß deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. RESULTS: There were no significant associations between global Aß burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aß deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. CONCLUSIONS: This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


Subject(s)
Alzheimer Disease , White Matter , Alzheimer Disease/diagnostic imaging , Biomarkers , Brain/diagnostic imaging , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Neuroimaging , White Matter/diagnostic imaging
12.
Ann Neurol ; 89(2): 341-357, 2021 02.
Article in English | MEDLINE | ID: mdl-33217037

ABSTRACT

OBJECTIVE: Isolated (or idiopathic) rapid eye movement sleep behavior disorder (iRBD) is associated with dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Biomarkers are lacking to predict conversion to a dementia or a motor-first phenotype. Here, we aimed at identifying a brain-clinical signature that predicts dementia in iRBD. METHODS: A brain-clinical signature was identified in 48 patients with polysomnography-confirmed iRBD using partial least squares between brain deformation and 27 clinical variables. The resulting variable was applied to 78 patients with iRBD followed longitudinally to predict conversion to a synucleinopathy, specifically DLB. The deformation scores from patients with iRBD were compared with 207 patients with PD, DLB, or prodromal DLB to assess if scores were higher in DLB compared to PD. RESULTS: One latent variable explained 31% of the brain-clinical covariance in iRBD, combining cortical and subcortical deformation and subarachnoid/ventricular expansion to cognitive and motor variables. The deformation score of this signature predicted conversion to a synucleinopathy in iRBD (p = 0.036, odds ratio [OR] = 2.249; 95% confidence interval [CI] = 1.053-4.803), specifically to DLB (OR = 4.754; 95% CI = 1.283-17.618, p = 0.020) and not PD (p = 0.286). Patients with iRBD who developed dementia had scores similar to clinical and prodromal patients with DLB but higher scores compared with patients with PD. The deformation score also predicted cognitive performance over 1, 2, and 4 years in patients with PD. INTERPRETATION: We identified a brain-clinical signature that predicts conversion in iRBD to more severe/dementing forms of synucleinopathy. This pattern may serve as a new biomarker to optimize patient care, target risk reduction strategies, and administer neuroprotective trials. ANN NEUROL 2021;89:341-357.


Subject(s)
Cognition , Lewy Body Disease/physiopathology , Parkinson Disease/physiopathology , REM Sleep Behavior Disorder/physiopathology , Aged , Brain/diagnostic imaging , Case-Control Studies , Female , Humans , Least-Squares Analysis , Lewy Body Disease/diagnostic imaging , Magnetic Resonance Imaging , Male , Mental Status and Dementia Tests , Middle Aged , Parkinson Disease/diagnostic imaging , Polysomnography , Prodromal Symptoms , REM Sleep Behavior Disorder/diagnostic imaging , Synucleinopathies/diagnostic imaging , Synucleinopathies/physiopathology
13.
Hum Brain Mapp ; 41(1): 139-149, 2020 01.
Article in English | MEDLINE | ID: mdl-31566290

ABSTRACT

Affective theory of mind (ToM) depends on both the decoding of emotional expressions and the reasoning on emotional mental states from social situations. While previous studies characterized the neural substrates underlying these processes, it remains unclear whether the nature of the emotional state inferred from others can influence the brain activation associated with affective ToM. In the present study, we focused on two types of emotions: basic emotions (BEs) (e.g., anger and surprise), which are innate and universal and self-conscious emotions (e.g., pride and embarrassment), which correspond to a special class of emotions involving the self and including a representation of one's relative reactions to internal and external standards. Specifically, we used an ecological functional MRI paradigm, on 21 healthy young subjects, to compare brain activations during the decoding of and the reasoning on others' self-conscious, basic and neutral mental states. Our results showed that compared to neutral states, the inference of self-conscious and basic emotional states from others elicited more activation in several core regions of affective ToM. Direct comparisons between emotional conditions revealed more activation for self-conscious than BEs in the right temporoparietal junction during the reasoning process and in left middle occipital regions during the decoding process. Further analyses using a localizer task showed that the extrastriate body area was more recruited for decoding others' self-conscious versus BEs, which emphasize the importance of body clues to properly infer these emotions. Using an original task allowing for an ecological assessment of the affective ToM, these results demonstrate that the complexity of the emotion inferred to others can influence the recruitment of ToM network. This study also validates the use of our task as an ecological tool to assess the affective ToM, constituting an avenue for the characterization of ToM impairments in neurological conditions.


Subject(s)
Cerebral Cortex/physiology , Ego , Emotions/physiology , Social Perception , Theory of Mind/physiology , Visual Perception/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Young Adult
14.
Sleep ; 42(6)2019 06 11.
Article in English | MEDLINE | ID: mdl-30854555

ABSTRACT

We aimed to investigate cortical and subcortical brain alterations in people with Parkinson's disease with polysomnography-confirmed rapid eye movement (REM) sleep behavior disorder (RBD). Thirty people with Parkinson's disease, including 15 people with RBD, were recruited and compared with 41 healthy controls. Surface-based cortical and subcortical analyses were performed on T1-weighted images to investigate thickness and shape abnormalities between groups, and voxel-based and deformation-based morphometry were performed to investigate local volume. Correlations were performed in patients to investigate the structural correlates of motor activity during REM sleep. People with RBD showed cortical thinning in the right perisylvian and inferior temporal cortices and shape contraction in the putamen compared with people without RBD. Compared with controls, people with RBD had extensive cortical thinning and volume loss, brainstem volume was reduced, and shape contraction was found in the basal ganglia and hippocampus. In comparison to controls, people without RBD showed more restricted thinning in the sensorimotor, parietal, and occipital cortices, reduced volume in the brainstem, temporal and more posterior areas, and shape contraction in the pallidum and hippocampus. In Parkinson's disease, higher tonic and phasic REM sleep motor activity was associated with contraction of the thalamic surface, extensive cortical thinning, and subtle volume reduction in the middle temporal gyrus. In Parkinson's disease, the presence of RBD is associated with extensive cortical and subcortical abnormalities, suggesting more severe neurodegeneration in people with RBD. This provides potential neuroanatomical correlates for the more severe clinical phenotype reported in people with Parkinson's disease with RBD.


Subject(s)
Brain/pathology , Parkinson Disease/pathology , REM Sleep Behavior Disorder/physiopathology , Sleep, REM/physiology , Aged , Atrophy/pathology , Basal Ganglia/pathology , Brain Stem/pathology , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Motor Activity/physiology , Parkinson Disease/complications , Polysomnography , REM Sleep Behavior Disorder/complications , Thalamus/pathology
15.
Neurobiol Aging ; 76: 106-114, 2019 04.
Article in English | MEDLINE | ID: mdl-30710833

ABSTRACT

Accumulating evidence demonstrates a direct relationship between impaired neural integrity and disrupted sleep physiology in normal and pathological aging. However, previous work has focus almost exclusively on nonrapid eye movement sleep electroencephalography as a proxy of cortical integrity with aging. Whether this relationship holds true for rapid eye movement sleep electroencephalography is unknown. Our results show that age-related reduction in low-frequency delta activity during both rapid eye movement and nonrapid eye movement sleep was statistically mediated by the thinning of the medial frontal and anterior cingulate cortices. These findings (1) support the potential role of the medial frontal and cingulate cortices, major hubs of the human brain, in synchronizing neuronal assemblies during sleep, and (2) suggest that, with age, a reduction in cortical integrity within this frontal network mediates the loss of delta power during sleep. Further work will determine whether cortical thinning and delta loss may interact and contribute to cognitive decline with aging.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography , Healthy Aging/physiology , Sleep/physiology , Adult , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Diffusion Tensor Imaging , Female , Healthy Aging/pathology , Humans , Middle Aged , Neuroimaging , Young Adult
16.
Int Rev Neurobiol ; 144: 185-210, 2019.
Article in English | MEDLINE | ID: mdl-30638454

ABSTRACT

Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a parasomnia characterized by the loss of muscle atonia and the presence of undesirable motor manifestations during rapid eye movement sleep. Research findings have shown that iRBD is a prodromal stage of synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. A wide array of neuroimaging techniques have improved our understanding of the prodromal stage of these diseases in patients with iRBD, and identified potential biomarkers. In this chapter, we summarize current knowledge about functional and structural central and peripheral neuroimaging in iRBD, including cross-sectional and longitudinal studies using positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, and transcranial sonography. Current neuroimaging research has revealed several brain alterations in iRBD similar to those reported in synucleinopathies, thereby improving our understanding of the pathophysiology underlying the clinical presentation and progression of their prodromal stages. Moreover, some abnormalities detected by neuroimaging show promise as potential biomarkers to predict which individuals with iRBD may be at risk of conversion and therefore candidates for inclusion in future clinical trials of neuroprotection.


Subject(s)
Neuroimaging/methods , REM Sleep Behavior Disorder/diagnostic imaging , Humans
17.
Parkinsonism Relat Disord ; 62: 163-170, 2019 05.
Article in English | MEDLINE | ID: mdl-30616869

ABSTRACT

INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a prodromal stage of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Depressive and anxiety symptoms are frequent features of PD, DLB and iRBD, and some studies suggest that depressive symptoms are a marker for neurodegeneration in iRBD. However, the pathophysiology of depressive and anxiety symptoms in iRBD is still unclear. This study aimed to investigate cortical and subcortical gray matter (GM) volume substrates of depressive and anxiety symptoms in iRBD patients. METHODS: Forty-six polysomnography-confirmed iRBD patients and 31 healthy controls (HC) without cognitive or mood impairment were recruited. All participants underwent 3-T magnetic resonance imaging and completed the Beck Depression Inventory Second Edition (BDI-II) and Beck Anxiety Inventory (BAI) questionnaires. Voxel-based morphometry analysis was performed to assess GM volume in cortical and subcortical structures. Between-group comparisons and regressions were performed. RESULTS: iRBD patients with depressive symptoms (BDI-II score > 13 or the use of antidepressants to treat depression) showed reduced GM volume in the caudate nucleus compared to HC and iRBD patients without depressive symptoms. Moreover, iRBD patients with anxiety symptoms (BAI score > 9 or the use of anxiolytics to treat anxiety) showed reduced GM volume in the left amygdala extending to the hippocampus compared to HC and iRBD patients without anxiety symptoms. In iRBD patients, higher BDI-II and BAI total scores were associated with lower GM volumes in these regions respectively. CONCLUSION: Depressive and anxiety symptoms in iRBD patients are related to patterns of cortical and subcortical GM volume loss.


Subject(s)
Anxiety/diagnostic imaging , Brain/diagnostic imaging , Depression/diagnostic imaging , Gray Matter/diagnostic imaging , REM Sleep Behavior Disorder/diagnostic imaging , Aged , Anxiety/epidemiology , Anxiety/psychology , Depression/epidemiology , Depression/psychology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuropsychological Tests , Organ Size , REM Sleep Behavior Disorder/epidemiology , REM Sleep Behavior Disorder/psychology
18.
Neurology ; 90(20): e1759-e1770, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29669906

ABSTRACT

OBJECTIVE: To investigate cortical and subcortical gray matter abnormalities underlying cognitive impairment in patients with REM sleep behavior disorder (RBD) with or without mild cognitive impairment (MCI). METHODS: Fifty-two patients with RBD, including 17 patients with MCI, were recruited and compared to 41 controls. All participants underwent extensive clinical assessments, neuropsychological examination, and 3-tesla MRI acquisition of T1 anatomical images. Vertex-based cortical analyses of volume, thickness, and surface area were performed to investigate cortical abnormalities between groups, whereas vertex-based shape analysis was performed to investigate subcortical structure surfaces. Correlations were performed to investigate associations between cortical and subcortical metrics, cognitive domains, and other markers of neurodegeneration (color discrimination, olfaction, and autonomic measures). RESULTS: Patients with MCI had cortical thinning in the frontal, cingulate, temporal, and occipital cortices, and abnormal surface contraction in the lenticular nucleus and thalamus. Patients without MCI had cortical thinning restricted to the frontal cortex. Lower patient performance in cognitive domains was associated with cortical and subcortical abnormalities. Moreover, impaired performance on olfaction, color discrimination, and autonomic measures was associated with thinning in the occipital lobe. CONCLUSIONS: Cortical and subcortical gray matter abnormalities are associated with cognitive status in patients with RBD, with more extensive patterns in patients with MCI. Our results highlight the importance of distinguishing between subgroups of patients with RBD according to cognitive status in order to better understand the neurodegenerative process in this population.


Subject(s)
Brain/pathology , Cognition Disorders/etiology , Cognition Disorders/pathology , Gray Matter/pathology , REM Sleep Behavior Disorder/complications , Aged , Blood Pressure/physiology , Cognition Disorders/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Neurologic Examination , Neuropsychological Tests , Polysomnography , Smell/physiology , Statistics, Nonparametric
19.
Cereb Cortex ; 28(2): 658-671, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28591814

ABSTRACT

Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD.


Subject(s)
Gray Matter/diagnostic imaging , Motor Activity/physiology , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Motor Skills/physiology , REM Sleep Behavior Disorder/diagnostic imaging , Aged , Female , Gray Matter/physiology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Organ Size/physiology , REM Sleep Behavior Disorder/physiopathology
20.
Brain ; 140(12): 3317-3328, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29194503

ABSTRACT

See Franzmeier and Dyrba (doi:10.1093/brain/awx304) for a scientific commentary on this article. Recent findings suggest that the topography and propagation of lesions in Alzheimer's disease are related to functional connectivity, either showing that regions of high global connectivity are more vulnerable or that lesions propagate neuron-to-neuron from a starting area called the epicentre, thus involving specific connectivity. However, the relative influence of specific and global connectivity and their differential impact on the three main neuroimaging biomarkers of the disease (atrophy, hypometabolism and amyloid-ß deposition) have never been investigated to date. Forty-two healthy elderly subjects and 35 amyloid-ß positive amnestic mild cognitive impairment and Alzheimer's disease patients underwent resting-state functional MRI, anatomical T1-weighted MRI, 18F-fluorodeoxyglucose-PET and florbetapir-PET scans. All patients also underwent follow-up T1-weighted MRI, 18F-fluorodeoxyglucose-PET and florbetapir-PET scans 18 months later to assess the lesion propagation. The epicentre was defined per modality as the most altered region at baseline in patients compared to controls. Maps of global and specific functional connectivity were computed from the resting-state functional MRI data of the healthy elderly subjects. Global connectivity corresponds to the connectivity strength of each grey matter area with the rest of the brain (i.e. all other grey matter areas) while specific connectivity refers to the connectivity of a single specific brain region (the epicentre) with the rest of the brain (i.e. all other brain regions). Maps of baseline alterations and propagation were computed for grey matter atrophy, hypometabolism and amyloid-ß deposition in patients. Regression analyses were performed across the 239 brain regions to assess the links between global or specific functional connectivity in healthy elderly subjects and Alzheimer's disease-related baseline disruptions or alteration propagation. Atrophy at baseline was predicted by specific connectivity and inversely correlated with global connectivity, while hypometabolism and amyloid-ß deposition were positively influenced by both global and specific connectivity. Regarding longitudinal changes, atrophy spread in regions with high specific connectivity while hypometabolism propagated in areas showing high global connectivity. This is the first study to show that global connectivity has an opposite relationship with atrophy versus hypometabolism and amyloid-ß deposition, suggesting that the high level of functional connectivity found in hubs exerts a differential influence on these Alzheimer's disease lesions. These results sustain the hypotheses of higher vulnerability of hubs to hypometabolism and amyloid-ß deposition versus transneuronal propagation of atrophy from the epicentre to connected regions, in Alzheimer's disease. Global and specific connectivity exert a differential influence on, and provide complementary information to predict, the topography of Alzheimer's disease lesions and their propagation.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Magnetic Resonance Imaging/standards , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Positron-Emission Tomography/standards , Aged , Aged, 80 and over , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/metabolism , Female , Follow-Up Studies , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...