Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Phys Med ; 81: 9-19, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310424

ABSTRACT

PURPOSE: To compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery. METHODS: The manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared. Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson RadiationTherapy anthropomorphic phantom. A subjective analysis was performed by neurosurgeons to compare the clinical IQ of the anthropomorphic phantom images acquired with the different i-CT systems and imaging protocols. Image uniformity, noise, contrast-to-noise-ratio (CNR), and spatial resolution were additionally assessed with the Catphan 504 phantom. RESULTS: O-arm i-CT caused 56% larger ED than Airo due to the high definition (HD) imaging protocol. The noise was larger for O-arm images leading to a lower CNR than that measured for Airo. Moreover, scattering and beam hardening effects were observed in the O-arm images. Better spatial resolution was measured for the O-arm system (9 lp/cm) than for Airo (4 lp/cm). For all the investigated protocols, O-arm was found to be better for identifying anatomical features important for accurate pedicle screw positioning. CONCLUSIONS: According to phantom measurements, the HD protocol of O-arm offered better clinical IQ than Airo but larger ED. The larger noise of O-arm images did not compromise the clinical IQ while the superior spatial resolution of this system allowed a better visibility of anatomical features important for pedicle screw positioning in the lumbar region.


Subject(s)
Imaging, Three-Dimensional , Surgery, Computer-Assisted , Cone-Beam Computed Tomography , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed
2.
Eur Radiol Exp ; 1(1): 18, 2017.
Article in English | MEDLINE | ID: mdl-29708194

ABSTRACT

BACKGROUND: The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. METHODS: Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. RESULTS: Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. CONCLUSION: IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.

3.
Med Dosim ; 39(3): 276-81, 2014.
Article in English | MEDLINE | ID: mdl-25088815

ABSTRACT

The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode array phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient's structures using the resultant "PDP" beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0.74). Moreover, clinically relevant differences increased with increasing QA passing rate, indicating that some of the largest dose differences occurred in the cases of high QA passing rates, which may be called "false negatives." The clinical importance of any disagreement between the measured and the calculated dose is often difficult to interpret; however, beam errors (either in delivery or in TPS calculation) can affect the effectiveness of the patient dose. Further research is needed to determinate the role of a PDP-type algorithm to accurately estimate patient dose effect.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated , Software , Humans , Male , Quality Assurance, Health Care
4.
Med Dosim ; 37(2): 186-91, 2012.
Article in English | MEDLINE | ID: mdl-22195735

ABSTRACT

To select among breast cancer patients and according to breast volume size those who may benefit from 3D conformal radiotherapy after conservative surgery applied with prone-position technique. Thirty-eight patients with early-stage breast cancer were grouped according to the target volume (TV) measured in the supine position: small (≤400 mL), medium (400-700 mL), and large (≥700 ml). An ad-hoc designed and built device was used for prone set-up to displace the contralateral breast away from the tangential field borders. All patients underwent treatment planning computed tomography in both the supine and prone positions. Dosimetric data to explore dose distribution and volume of normal tissue irradiated were calculated for each patient in both positions. Homogeneity index, hot spot areas, the maximum dose, and the lung constraints were significantly reduced in the prone position (p < 0.05). The maximum heart distance and the V(5Gy) did not vary consistently in the 2 positions (p = 0.06 and p = 0.7, respectively). The number of necessary monitor units was significantly higher in the supine position (312 vs. 232, p < 0.0001). The subgroups analysis pointed out the advantage in lung sparing in all TV groups (small, medium and large) for all the evaluated dosimetric constraints (central lung distance, maximum lung distance, and V(5Gy), p < 0.0001). In the small TV group, a dose reduction in nontarget areas of 22% in the prone position was detected (p = 0.056); in the medium and high TV groups, the difference was of about -10% (p = NS). The decrease in hot spot areas in nontarget tissues was 73%, 47%, and 80% for small, medium, and large TVs in the prone position, respectively. Although prone breast radiotherapy is normally proposed in patients with breasts of large dimensions, this study gives evidence of dosimetric benefit in all patient subgroups irrespective of breast volume size.


Subject(s)
Breast Neoplasms/radiotherapy , Breast/anatomy & histology , Prone Position , Female , Humans , Organ Size , Patient Selection , Radiotherapy Dosage
5.
Int J Radiat Oncol Biol Phys ; 76(1): 110-5, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19619955

ABSTRACT

PURPOSE: To determine lung dosimetric constraints that correlate with radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional radiation therapy and concurrent chemotherapy. METHODS AND MATERIALS: Between June 2002 and December 2006, 97 patients with locally advanced non-small-cell lung cancer were treated with concomitant radiochemotherapy. All patients underwent complete three-dimensional treatment planning (including dose-volume histograms), and patients were treated only if the percentage of total lung volume exceeding 20 Gy (V(20)) and 30 Gy (V(30)), and mean lung dose (MLD) had not exceeded the constraints of 31%, 18%, and 20 Gy, respectively. The total and ipsilateral lung dose-volume histogram parameters, planning target volume, and total dose delivered were analyzed and correlated with pneumonitis incidence. RESULTS: If dose constraints to the total lung were respected, the most statistically significant factors predicting pneumonitis were the percentage of ipsilateral lung volume exceeding 20 Gy (V(20)ipsi), percentage of ipsilateral lung volume exceeding 30 Gy (V(30)ipsi), and planning target volume. These parameters divided the patients into low- and high-risk groups: if V(20)ipsi was 52% or lower, the risk of pneumonitis was 9%, and if V(20)ipsi was greater than 52%, the risk of pneumonitis was 46%; if V(30)ipsi was 39% or lower, the risk of pneumonitis was 8%, and if V(30)ipsi was greater than 39%, the risk of pneumonitis was 38%. Actuarial curves of the development of pneumonitis of Grade 2 or higher stratified by V(20)ipsi and V(30)ipsi were created. CONCLUSIONS: The correlation between pneumonitis and dosimetric constraints has been validated. Adding V(20)ipsi and V(30)ipsi to the classical total lung constraints could reduce pulmonary toxicity in concurrent chemoradiation treatment. V(20)ipsi and V(30)ipsi are important if the V(20) to the total lung, V(30) to the total lung, and mean lung dose have not exceeded the constraints of 31%, 18%, and 20 Gy, respectively.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Lung/radiation effects , Radiation Pneumonitis/etiology , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Radiation Pneumonitis/diagnosis , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Regression Analysis , Risk Assessment/methods
6.
Med Dosim ; 35(3): 169-78, 2010.
Article in English | MEDLINE | ID: mdl-19931029

ABSTRACT

The aim of this study is to propose and validate an original new class of solutions for three-dimensional conformal radiation therapy (3DCRT) treatment planning for non-small cell lung cancer (NSCLC) according to the different patterns of disease presentation (on the basis of tumor location and volume) and to explore beams arrangement (planar or no-planar solutions) to respect dose constraints to the lung parenchyma. Benchmarks matched to validate the new approach are interuser reproducibility and saving on planning time. Tumor location was explored and specific categories created according to the tumor volume and location. Therefore, by applying planar and no-planar 3D plans, we searched for an optimization of the beams arrangement for each category. Dose-volume histograms (DVHs) were analyzed and a plan comparison performed. Results were then validated (class solution planning confirmation) by applying the same strategy to another group of patients. This has been realized at two dose levels (50.4 and 59.4 Gy). Fifty-nine patients were enrolled in this dosimetric study. In the first 27 patients ("exploratory sample") three main planning target volume location categories were identified according to the pattern of the disease presentation: (1) centrally located; (2) peripheral T and mediastinal N (P+N); and (3) superior sulcus. Original class solutions were proposed for each location category. On the next 32 patients ("validation sample"), the treatment planning started directly with the recommended approach. Mean V(20 Gy) value was 18.8% (SD +/- 7.25); mean V(30 Gy):12% (SD +/- 4.05); and mean lung dose: 11.6 Gy (SD +/- 5.77). No differences between the two total dose level groups were observed. These results suggest a simple and reproducible tool for treatment planning in NSCLC, allowing interuser reproducibility and cutting down on planning time.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung/pathology , Lung Neoplasms/pathology , Male , Middle Aged , Reproducibility of Results
7.
Med Phys ; 36(6): 2206-14, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19610309

ABSTRACT

The article reports a feasibility study about the potentiality of an in vivo dosimetry method for the adaptive radiotherapy of the lung tumors treated by 3D conformal radiotherapy techniques (3D CRTs). At the moment image guided radiotherapy (IGRT) has been used for this aim, but it requires taking many periodic radiological images during the treatment that increase workload and patient dose. In vivo dosimetry reported here can reduce the above efforts, alerting the medical staff for the commissioning of new radiological images for an eventual adaptive plan. The in vivo dosimetry method applied on 20 patients makes use of the transit signal St on the beam central axis measured by a small ion chamber positioned on an electronic portal imaging device (EPID) or by the EPID itself. The reconstructed in vivo dosimetry at the isocenter point Diso requires a convolution between the transit signal St and a dose reconstruction factor C that essentially depends on (i) tissue inhomogeneities along the beam central axis and (ii) the in-patient isocenter depth. The C factors, one for every gantry angle, are obtained by processing the patient's computed tomography scan. The method has been recently applied in some Italian centers to check the radiotherapy of pelvis, breast, head, and thorax treatments. In this work the dose reconstruction was carried out in five centers to check the Diso in the lung tumor during the 3D CRT, and the results have been used to detect the interfraction tumor anatomy variations that can require new CT imaging and an adaptive plan. In particular, in three centers a small ion chamber was positioned below the patient and used for the St measurement. In two centers, the St signal was obtained directly by 25 central pixels of an a-Si EPID, equipped with commercial software that enabled its use as a stable detector. A tolerance action level of +/- 6% for every checked beam was assumed. This means that when a difference greater than 6% between the predicted dose by the treatment planning system, Diso,TPS, and the Diso was observed, the clinical action started to detect possible errors. 60% of the patients examined presented morphological changes during the treatment that were checked by the in vivo dosimetry and successively confirmed by the new CT scans. In this work, a patient that showed for all beams Diso values outside the tolerance level, new CT scans were commissioned for an adaptive plan. The lung dose volume histograms (DVHs) for a Diso,TPs=2 Gy for fraction suggested the adaptive plan to reduce the dose in lung tissue. The results of this research show that the dose guided radiotherapy (DGRT) by the Diso reconstruction was feasible for daily or periodic investigation on morphological lung tumor changes. In other words, since during 3D CRT treatments the anatomical lung tumor changes occur frequently, the DGRT can be well integrated with the IGRT.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiographic Image Interpretation, Computer-Assisted/methods , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Feasibility Studies , Humans , Radiotherapy Dosage , Systems Integration , Treatment Outcome
8.
Tumori ; 95(2): 236-9, 2009.
Article in English | MEDLINE | ID: mdl-19579872

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract. The main treatment for localized gastrointestinal stromal tumors is surgical resection. These tumors respond poorly to conventional cytotoxic chemotherapy agents and to radiotherapy. Imatinib mesylate, a small-molecule kinase inhibitor, has proved useful in the treatment of recurrent or metastatic GISTs and is now being tested in the adjuvant and neoadjuvant setting. The role of radiotherapy in the management of patients with GIST is currently restricted to symptomatic palliation. We present the case of a 54-year-old man affected by rectal GIST extending to the anal canal, with constipation, hematochezia, and anal pain. He received imatinib, 400 mg orally per day, for a week before and during radiation therapy. Irradiation was delivered to the gross tumor volume by 3D conformal therapy. The planned total dose was 50.4 Gy in fractions of 1.8 Gy daily. We observed a partial clinical response 3 weeks after the end of combination treatment. The patient then underwent a sphincter-saving surgical procedure. There was no perioperative morbidity and a complete pathological response was obtained. At the present time, the role of radiotherapy in the management of patients with GIST is restricted to symptomatic palliation. The introduction of molecularly targeted therapy combined with radiation therapy could improve the outcomes for patients diagnosed with GIST.


Subject(s)
Antineoplastic Agents/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/radiotherapy , Neoadjuvant Therapy , Piperazines/therapeutic use , Pyrimidines/therapeutic use , Radiotherapy, Conformal , Rectal Neoplasms/drug therapy , Rectal Neoplasms/radiotherapy , Antineoplastic Agents/adverse effects , Benzamides , Chemotherapy, Adjuvant/adverse effects , Fibrosis/etiology , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate , Immunohistochemistry , Male , Middle Aged , Necrosis/etiology , Neoadjuvant Therapy/methods , Piperazines/adverse effects , Pyrimidines/adverse effects , Radiotherapy, Adjuvant/adverse effects , Radiotherapy, Conformal/adverse effects , Rectal Neoplasms/pathology , Tomography, X-Ray Computed , Treatment Outcome
9.
Med Biol Eng Comput ; 47(4): 425-33, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19221822

ABSTRACT

An amorphous silicon (a-Si) electronic portal imaging device (EPID) was implemented to perform transit in vivo dosimetry for dynamic conformal arc therapy (DCAT). A set of images was acquired for each arc irradiation using the EPID cine acquisition mode, that supplies a frame acquisition rate of one image every 1.66 s, with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, +/-1% (2SD) evaluated during 3 months, signal reproducibility within +/-0.8% (2SD) and linearity with dose and dose rate within +/-1% (2SD) were obtained. The transit signal, S (t), due to the transmitted radiotherapy beam below a solid phantom, measured by the EPID cine acquisition mode was used to determine, (1) a set of correlation functions, F(w, L), defined as the ratio between S (t) and the dose at half thickness, D (m), measured in solid water phantoms of different thicknesses, w and with square fields of side L, (2) a set of factors, f(d, L), that take into account the different x-ray scatter contribution from the phantom to the S (t) signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, D (iso), for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was applied to a first patient and the results show that the reconstructed D (iso) values can be obtained with an accuracy within +/-5%. In conclusion, it was assessed that an a-Si EPID with the cine acquisition mode is suitable to perform transit in vivo dosimetry for the DCAT therapy.


Subject(s)
Radiometry/methods , Radiotherapy, Conformal/methods , Algorithms , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
10.
Med Phys ; 35(5): 1830-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18561658

ABSTRACT

A method for the determination of the in vivo isocenter dose, D(iso), has been applied to the dynamic conformal are therapy (DCAT) for thoracic tumors. The method makes use of the transmitted signal, S(t,alpha), measured at different gantry angles, a, by a small ion chamber positioned on the electronic portal imaging device. The in vivo method is implemented by a set of correlation functions obtained by the ratios between the transmitted signal and the midplane dose in a solid phantom, irradiated by static fields. The in vivo dosimetry at the isocenter for the DCAT requires the convolution between the signals, S(t,alpha), and the dose reconstruction factors, C(alpha), that depend on the patient's anatomy and on its tissue inhomogeneities along the beam central axis in the a direction. The C(alpha) factors are obtained by processing the patient's computed tomography scan. The method was tested by taking measurements in a cylindrical phantom and in a Rando Alderson phantom. The results show that the difference between the convolution calculations and the phantom measurements is within +/-2%. The in vivo dosimetry of the stereotactic DCAT for six lung tumors, irradiated with three or four arcs, is reported. The isocenter dose up to 17 Gy per therapy fraction was delivered on alternating days for three fractions. The agreement obtained in this pilot study between the total in vivo dose D(iso) and the planned dose D(iso,TPS) at the isocenter is +/-4%. The method has been applied on the DCAT obtaining a more extensive monitoring of possible systematic errors, the effect of which can invalidate the current therapy which uses a few high-dose fractions.


Subject(s)
Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Thoracic Neoplasms/radiotherapy , Calibration , Humans , Ions , Lung Neoplasms/pathology , Models, Statistical , Particle Accelerators , Phantoms, Imaging , Pilot Projects , Quality Control , Radiation Dosage , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation
11.
Phys Med Biol ; 52(16): 5101-17, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17671356

ABSTRACT

This work reports the results of the application of a practical method to determine the in vivo dose at the isocenter point, D(iso), of brain thorax and pelvic treatments using a transit signal S(t). The use of a stable detector for the measurement of the signal S(t) (obtained by the x-ray beam transmitted through the patient) reduces many of the disadvantages associated with the use of solid-state detectors positioned on the patient as their periodic recalibration, and their positioning is time consuming. The method makes use of a set of correlation functions, obtained by the ratio between S(t) and the mid-plane dose value, D(m), in standard water-equivalent phantoms, both determined along the beam central axis. The in vivo measurement of D(iso) required the determination of the water-equivalent thickness of the patient along the beam central axis by the treatment planning system that uses the electron densities supplied by calibrated Hounsfield numbers of the computed tomography scanner. This way it is, therefore, possible to compare D(iso) with the stated doses, D(iso,TPS), generally used by the treatment planning system for the determination of the monitor units. The method was applied in five Italian centers that used beams of 6 MV, 10 MV, 15 MV x-rays and (60)Co gamma-rays. In particular, in four centers small ion-chambers were positioned below the patient and used for the S(t) measurement. In only one center, the S(t) signals were obtained directly by the central pixels of an EPID (electronic portal imaging device) equipped with commercial software that enabled its use as a stable detector. In the four centers where an ion-chamber was positioned on the EPID, 60 pelvic treatments were followed for two fields, an anterior-posterior or a posterior-anterior irradiation and a lateral-lateral irradiation. Moreover, ten brain tumors were checked for a lateral-lateral irradiation, and five lung tumors carried out with three irradiations with different gantry angles were followed. One center used the EPID as a detector for the S(t) measurement and five pelvic treatments with six fields (many with oblique incidence) were followed. These last results are reported together with those obtained in the same center during a pilot study on ten pelvic treatments carried out by four orthogonal fields. The tolerance/action levels for every radiotherapy fraction were 4% and 5% for the brain (symmetric inhomogeneities) and thorax/pelvic (asymmetric inhomogeneities) irradiations, respectively. This way the variations between the total measured and prescribed doses at the isocenter point in five fractions were well within 2% for the brain treatment, and 4% for thorax/pelvic treatments. Only 4 out of 90 patients needed new replanning, 2 patients of which needed a new CT scan.


Subject(s)
Algorithms , Brain Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Thoracic Neoplasms/radiotherapy , Humans , Radiotherapy Dosage
12.
J Membr Biol ; 211(3): 185-90, 2006.
Article in English | MEDLINE | ID: mdl-17091211

ABSTRACT

Prostasomes are membranous vesicles present in ejaculated human semen. They are very rich in cholesterol and can interact with spermatozoa. Their physiological roles are still under study. Prostasomes were mixed with liposomes prepared from various lipids, such as N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP), DOTAP/1,2-dipalmytoyl-sn-glycero-3-phosphorylcholine (DPPC, 4:1 molar ratio) and DOTAP/cholesterol (4:1, molar ratio) at different pH values (5-8). The mixing of the lipid phases (fusion) was determined by the relief of octadecyl rhodamine B chloride (R(18)) self-quenching and the radii of the vesicles, by light scattering measurements. The mixing of lipids and the radii of prostasomes were both influenced by the addition of liposome, although in a different manner. The ability of prostasomes (modified by previous treatment with liposomes) to transfer lipid to spermatozoa was also measured. Pretreatment with DOTAP decreased the phenomenon and addition of DPPC abolished it. On the other hand, pretreatment of prostasomes with DOTAP/cholesterol liposomes did not affect the transfer of lipid between prostasome and spermatozoa. Therefore, the ability of vesicles to fuse (or, at least, to exchange the lipid component) was affected by the enrichment in either natural or artificial lipid. This may open new possibilities for the modulation of spermatozoa capacitation and acrosome reaction.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/pharmacology , Cell Communication/drug effects , Cholesterol/pharmacology , Fatty Acids, Monounsaturated/pharmacology , Quaternary Ammonium Compounds/pharmacology , Semen/drug effects , Spermatozoa/drug effects , Adult , Cell Fusion , Humans , Lipids/chemistry , Liposomes/chemistry , Liposomes/metabolism , Male , Semen/chemistry , Semen/metabolism , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...