Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 4043, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279485

ABSTRACT

Activation of the innate immune pattern recognition receptor NOD2 by the bacterial muramyl-dipeptide peptidoglycan fragment triggers recruitment of the downstream adaptor kinase RIP2, eventually leading to NF-κB activation and proinflammatory cytokine production. Here we show that full-length RIP2 can form long filaments mediated by its caspase recruitment domain (CARD), in common with other innate immune adaptor proteins. We further show that the NOD2 tandem CARDs bind to one end of the RIP2 CARD filament, suggesting a mechanism for polar filament nucleation by activated NOD2. We combine X-ray crystallography, solid-state NMR and high-resolution cryo-electron microscopy to determine the atomic structure of the helical RIP2 CARD filament, which reveals the intermolecular interactions that stabilize the assembly. Using structure-guided mutagenesis, we demonstrate the importance of RIP2 polymerization for the activation of NF-κB signalling by NOD2. Our results could be of use to develop new pharmacological strategies to treat inflammatory diseases characterised by aberrant NOD2 signalling.


Subject(s)
NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Caspase Activation and Recruitment Domain , HEK293 Cells , Humans , Protein Conformation , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics
2.
Nucleic Acids Res ; 46(2): 956-971, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29202182

ABSTRACT

Influenza polymerase uses short capped primers snatched from nascent Pol II transcripts to initiate transcription of viral mRNAs. Here we describe crystal structures of influenza A and B polymerase bound to a capped primer in a configuration consistent with transcription initiation ('priming state') and show by functional assays that conserved residues from both the PB2 midlink and cap-binding domains are important for positioning the capped RNA. In particular, mutation of PB2 Arg264, which interacts with the triphosphate linkage in the cap, significantly and specifically decreases cap-dependent transcription. We also compare the configuration of the midlink and cap-binding domains in the priming state with their very different relative arrangement (called the 'apo' state) in structures where the potent cap-binding inhibitor VX-787, or a close analogue, is bound. In the 'apo' state the inhibitor makes additional interactions to the midlink domain that increases its affinity beyond that to the cap-binding domain alone. The comparison suggests that the mechanism of resistance of certain mutations that allow virus to escape from VX-787, notably PB2 N510T, can only be rationalized if VX-787 has a dual mode of action, direct inhibition of capped RNA binding as well as stabilization of the transcriptionally inactive 'apo' state.


Subject(s)
RNA Cap Analogs/metabolism , RNA Caps/metabolism , RNA Polymerase II/metabolism , RNA/metabolism , Viral Proteins/metabolism , Binding Sites/genetics , Crystallography, X-Ray , HEK293 Cells , Humans , Indoles/metabolism , Indoles/pharmacology , Influenza A virus/enzymology , Protein Binding , Pyridines , Pyrimidines , Pyrroles , RNA/chemistry , RNA/genetics , RNA Cap Analogs/pharmacology , RNA Caps/chemistry , RNA Caps/genetics , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , Viral Proteins/chemistry , Viral Proteins/genetics
3.
PLoS Pathog ; 12(6): e1005636, 2016 06.
Article in English | MEDLINE | ID: mdl-27304209

ABSTRACT

Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5' end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase.


Subject(s)
Endonucleases/chemistry , Endonucleases/metabolism , Lassa virus/enzymology , Orthohantavirus/enzymology , Arenavirus/chemistry , Arenavirus/enzymology , Calorimetry , Crystallography, X-Ray , Orthohantavirus/chemistry , Lassa virus/chemistry , Orthobunyavirus/chemistry , Orthobunyavirus/enzymology , Protein Conformation , RNA Caps/metabolism , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/metabolism
4.
Mol Cell ; 61(1): 125-37, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26711008

ABSTRACT

Influenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3' and 5' vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5' end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Što bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs.


Subject(s)
Gammainfluenzavirus/enzymology , Influenza A Virus, H5N1 Subtype/enzymology , Influenza B virus/enzymology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza B virus/genetics , Gammainfluenzavirus/genetics , Lasers , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Nuclear Localization Signals/metabolism , Protein Interaction Domains and Motifs , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Ribonucleoproteins/metabolism , Scattering, Small Angle , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...