Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 16(4)2024 04 18.
Article in English | MEDLINE | ID: mdl-38675967

ABSTRACT

Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows.


Subject(s)
Farms , Influenza A virus , Influenza Vaccines , Orthomyxoviridae Infections , Phylogeny , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Swine Diseases/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Influenza A virus/genetics , Influenza A virus/immunology , Influenza A virus/isolation & purification , Influenza A virus/classification , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals, Suckling , Vaccination/veterinary , Endemic Diseases/veterinary , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , RNA, Viral/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/immunology , Genome, Viral
2.
Transbound Emerg Dis ; 65(6): 1720-1732, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29968338

ABSTRACT

From the severe porcine epidemic diarrhoea (PED) epidemics that struck in 2013 in the United States of America and other countries of North and South America, two types of porcine epidemic diarrhoea virus (PEDV) were isolated, namely the InDel and the non-InDel strains. They are differentiated by insertions/deletions in the S1 nucleotide sequence of the S gene, and differences in virulence were observed from the clinical cases. In 2014, a PED outbreak occurred in a pig farm in France, from which an InDel strain was isolated. This study aimed at comparing, under experimental conditions, the pathogenicity and the direct and indirect transmissions between a non-InDel strain isolated from a PED-affected piglet in 2014 in the USA and the French InDel strain. All infected pigs showed clinical signs with the non-InDel strain although only the inoculated and direct contact pigs showed clinical signs in the InDel strain group. Although viral RNA was detected in air samples with both strains, the indirect contact pigs remained free from infection with the InDel strain in contrast to the non-InDel group in which airborne transmission occurred in the indirect contact pigs. All infected pigs shed virus in faeces regardless of PEDV strain with 9 of 30 pigs showing intermittent faecal shedding. The transmission rate by direct contact was found to be 2.17-fold higher than the non-InDel strain compared with the InDel. In conclusion, the InDel strain was less pathogenic than the non-InDel strain in our experimental conditions. The transmission route differed between the two strains. Direct contact was the main transmission route for the InDel strain, although the non-InDel strain was transmitted through direct contact and indirectly through the air.


Subject(s)
Coronavirus Infections/transmission , Disease Transmission, Infectious/veterinary , Porcine epidemic diarrhea virus/pathogenicity , Swine Diseases/transmission , Animals , Base Sequence , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Diarrhea/epidemiology , Disease Outbreaks/veterinary , Farms , Feces/virology , France , Porcine epidemic diarrhea virus/genetics , RNA, Viral/genetics , South America , Swine , Swine Diseases/virology , United States , Virulence
3.
Genome Announc ; 3(6)2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26679573

ABSTRACT

A unique porcine circovirus type 2 capsid protein (ORF2) sequence was detected in swine samples submitted to the Iowa State University Veterinary Diagnostic Laboratory. The complete genome sequences of four viruses, one from Mexico and three from the United States, were determined to further characterize this novel PCV2 genotype.

4.
Influenza Res Treat ; 2012: 329029, 2012.
Article in English | MEDLINE | ID: mdl-23074664

ABSTRACT

Influenza A viruses cause acute respiratory disease in swine. Viruses with H1 hemagglutinin genes from the human seasonal lineage (δ-cluster) have been isolated from North American swine since 2003. The objective of this work was to study the pathogenesis and transmission of δ-cluster H1 influenza viruses in swine, comparing three isolates from different phylogenetic subclusters, geographic locations, and years of isolation. Two isolates from the δ2 subcluster, A/sw/MN/07002083/07 H1N1 (MN07) and A/sw/IL/00685/05 H1N1 (IL05), and A/sw/TX/01976/08 H1N2 (TX08) from the δ1 sub-cluster were evaluated. All isolates caused disease and were transmitted to contact pigs. Respiratory disease was apparent in pigs infected with MN07 and IL05 viruses; however, clinical signs and lung lesions were reduced in severity as compared to TX08. On day 5 following infection MN07-infected pigs had lower virus titers than the TX08 pigs, suggesting that although this H1N1 was successfully transmitted, it may not replicate as efficiently in the upper or lower respiratory tract. MN07 and IL05 H1N1 induced higher serum antibody titers than TX08. Greater serological cross-reactivity was observed for viruses from the same HA phylogenetic sub-cluster; however, antigenic differences between the sub-clusters may have implications for disease control strategies for pigs.

SELECTION OF CITATIONS
SEARCH DETAIL