Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
2.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38645001

ABSTRACT

Biological sex affects the pathogenesis of type 2 and type 1 diabetes (T2D, T1D) including the development of ß cell failure observed more often in males. The mechanisms that drive sex differences in ß cell failure is unknown. Studying sex differences in islet regulation and function represent a unique avenue to understand the sex-specific heterogeneity in ß cell failure in diabetes. Here, we examined sex and race differences in human pancreatic islets from up to 52 donors with and without T2D (including 37 donors from the Human Pancreas Analysis Program [HPAP] dataset) using an orthogonal series of experiments including single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), dynamic hormone secretion, and bioenergetics. In cultured islets from nondiabetic (ND) donors, in the absence of the in vivo hormonal environment, sex differences in islet cell type gene accessibility and expression predominantly involved sex chromosomes. Of particular interest were sex differences in the X-linked KDM6A and Y-linked KDM5D chromatin remodelers in female and male islet cells respectively. Islets from T2D donors exhibited similar sex differences in differentially expressed genes (DEGs) from sex chromosomes. However, in contrast to islets from ND donors, islets from T2D donors exhibited major sex differences in DEGs from autosomes. Comparing ß cells from T2D and ND donors revealed that females had more DEGs from autosomes compared to male ß cells. Gene set enrichment analysis of female ß cell DEGs showed a suppression of oxidative phosphorylation and electron transport chain pathways, while male ß cell had suppressed insulin secretion pathways. Thus, although sex-specific differences in gene accessibility and expression of cultured ND human islets predominantly affect sex chromosome genes, major differences in autosomal gene expression between sexes appear during the transition to T2D and which highlight mitochondrial failure in female ß cells.

3.
Nat Med ; 30(4): 1065-1074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443691

ABSTRACT

Type 2 diabetes (T2D) is a multifactorial disease with substantial genetic risk, for which the underlying biological mechanisms are not fully understood. In this study, we identified multi-ancestry T2D genetic clusters by analyzing genetic data from diverse populations in 37 published T2D genome-wide association studies representing more than 1.4 million individuals. We implemented soft clustering with 650 T2D-associated genetic variants and 110 T2D-related traits, capturing known and novel T2D clusters with distinct cardiometabolic trait associations across two independent biobanks representing diverse genetic ancestral populations (African, n = 21,906; Admixed American, n = 14,410; East Asian, n =2,422; European, n = 90,093; and South Asian, n = 1,262). The 12 genetic clusters were enriched for specific single-cell regulatory regions. Several of the polygenic scores derived from the clusters differed in distribution among ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a body mass index (BMI) of 30 kg m-2 in the European subpopulation and 24.2 (22.9-25.5) kg m-2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg m-2 in the East Asian group. Thus, these multi-ancestry T2D genetic clusters encompass a broader range of biological mechanisms and provide preliminary insights to explain ancestry-associated differences in T2D risk profiles.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Risk Factors , Phenotype , Multifactorial Inheritance/genetics , Genetic Predisposition to Disease/genetics
4.
medRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37986756

ABSTRACT

Over 10% of type 1 diabetes (T1D) cases do not have high-risk HLA-DR3 or DR4 haplotypes with distinct clinical features such as later onset and reduced insulin dependence. To identify genetic drivers of T1D in the absence of DR3/DR4, we performed association and fine-mapping analyses in 12,316 non-DR3/DR4 samples. Risk variants at the MHC and other loci genome-wide had heterogeneity in effects on T1D dependent on DR3/DR4, and non-DR3/DR4 T1D had evidence for a greater polygenic burden. T1D-assocated variants in non-DR3/DR4 were more enriched for loci, regulatory elements, and pathways for antigen presentation, innate immunity, and beta cells, and depleted in T cells, compared to DR3/DR4. Non-DR3/DR4 T1D cases were poorly classified based on an existing genetic risk score GRS2, and we created a new GRS which highly discriminated non-DR3/DR4 T1D from both non-diabetes and T2D. In total we identified heterogeneity in T1D genetic risk and disease mechanisms dependent on high-risk HLA haplotype and which enabled accurate classification of T1D across HLA background.

6.
Res Sq ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37886436

ABSTRACT

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions. Polygenic scores derived from the clusters differed in distribution between ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-ancestry T2D genetic subtypes encompass a broader range of biological mechanisms and help explain ancestry-associated differences in T2D risk profiles.

7.
medRxiv ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37808749

ABSTRACT

We identified genetic subtypes of type 2 diabetes (T2D) by analyzing genetic data from diverse groups, including non-European populations. We implemented soft clustering with 650 T2D-associated genetic variants, capturing known and novel T2D subtypes with distinct cardiometabolic trait associations. The twelve genetic clusters were distinctively enriched for single-cell regulatory regions. Polygenic scores derived from the clusters differed in distribution between ancestry groups, including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 (22.9-25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, the equivalent BMI threshold increased to 28.5 (27.1-30.0) kg/m2 in the East Asian group, explaining about 75% of the difference in BMI thresholds. Thus, these multi-ancestry T2D genetic subtypes encompass a broader range of biological mechanisms and help explain ancestry-associated differences in T2D risk profiles.

8.
Diabetes ; 72(11): 1719-1728, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37582230

ABSTRACT

Pancreatic islets consist of multiple cell types that produce hormones required for glucose homeostasis, and islet dysfunction is a major factor in type 1 and type 2 diabetes. Numerous studies have assessed transcription across individual cell types using single-cell assays; however, there is no canonical reference of gene expression in islet cell types that is also easily accessible for researchers to query and use in bioinformatics pipelines. Here we present an integrated map of islet cell type-specific gene expression from 192,203 cells from single-cell RNA sequencing of 65 donors without diabetes, donors who were type 1 diabetes autoantibody positive, donors with type 1 diabetes, and donors with type 2 diabetes from the Human Pancreas Analysis Program. We identified 10 distinct cell types, annotated subpopulations of several cell types, and defined cell type-specific marker genes. We tested differential expression within each cell type across disease states and identified 1,701 genes with significant changes in expression, with most changes observed in ß-cells from donors with type 1 diabetes. To facilitate user interaction, we provide several single-cell visualization and reference mapping tools, as well as the open-access analytical pipelines used to create this reference. The results will serve as a valuable resource to investigators studying islet biology.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Gene Expression
9.
PLoS Biol ; 21(8): e3002233, 2023 08.
Article in English | MEDLINE | ID: mdl-37561710

ABSTRACT

To address the challenge of translating genetic discoveries for type 1 diabetes (T1D) into mechanistic insight, we have developed the T1D Knowledge Portal (T1DKP), an open-access resource for hypothesis development and target discovery in T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/genetics , Genomics , Human Genetics
10.
PLoS Genet ; 19(6): e1010759, 2023 06.
Article in English | MEDLINE | ID: mdl-37289818

ABSTRACT

Gene regulation is highly cell type-specific and understanding the function of non-coding genetic variants associated with complex traits requires molecular phenotyping at cell type resolution. In this study we performed single nucleus ATAC-seq (snATAC-seq) and genotyping in peripheral blood mononuclear cells from 13 individuals. Clustering chromatin accessibility profiles of 96,002 total nuclei identified 17 immune cell types and sub-types. We mapped chromatin accessibility QTLs (caQTLs) in each immune cell type and sub-type using individuals of European ancestry which identified 6,901 caQTLs at FDR < .10 and 4,220 caQTLs at FDR < .05, including those obscured from assays of bulk tissue such as with divergent effects on different cell types. For 3,941 caQTLs we further annotated putative target genes of variant activity using single cell co-accessibility, and caQTL variants were significantly correlated with the accessibility level of linked gene promoters. We fine-mapped loci associated with 16 complex immune traits and identified immune cell caQTLs at 622 candidate causal variants, including those with cell type-specific effects. At the 6q15 locus associated with type 1 diabetes, in line with previous reports, variant rs72928038 was a naïve CD4+ T cell caQTL linked to BACH2 and we validated the allelic effects of this variant on regulatory activity in Jurkat T cells. These results highlight the utility of snATAC-seq for mapping genetic effects on accessible chromatin in specific cell types.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Chromatin , Humans , Chromatin/genetics , Multifactorial Inheritance , Leukocytes, Mononuclear , Quantitative Trait Loci/genetics
11.
Nat Rev Genet ; 24(8): 516-534, 2023 08.
Article in English | MEDLINE | ID: mdl-37161089

ABSTRACT

Genome-wide association studies (GWAS) have linked hundreds of thousands of sequence variants in the human genome to common traits and diseases. However, translating this knowledge into a mechanistic understanding of disease-relevant biology remains challenging, largely because such variants are predominantly in non-protein-coding sequences that still lack functional annotation at cell-type resolution. Recent advances in single-cell epigenomics assays have enabled the generation of cell type-, subtype- and state-resolved maps of the epigenome in heterogeneous human tissues. These maps have facilitated cell type-specific annotation of candidate cis-regulatory elements and their gene targets in the human genome, enhancing our ability to interpret the genetic basis of common traits and diseases.


Subject(s)
Epigenomics , Genome-Wide Association Study , Humans , Regulatory Sequences, Nucleic Acid , Genome, Human , Phenotype , Polymorphism, Single Nucleotide
12.
Nat Genet ; 55(6): 984-994, 2023 06.
Article in English | MEDLINE | ID: mdl-37231096

ABSTRACT

Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 2/genetics , Multiomics , Insulin-Secreting Cells/metabolism , Gene Expression Regulation , Chromatin/metabolism
14.
Dev Cell ; 58(9): 727-743.e11, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37040771

ABSTRACT

Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-ß cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro ß cell maturation and identify sex hormones as drivers of ß cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Pluripotent Stem Cells , Adult , Humans , Pancreas , Cell Differentiation/genetics
15.
Diabetes ; 72(4): 433-448, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36940317

ABSTRACT

The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Subject(s)
Diabetes Mellitus , Islets of Langerhans , Pancreas, Exocrine , Pancreatic Diseases , Humans , Diabetes Mellitus/metabolism , Pancreas , Pancreatic Diseases/metabolism
16.
bioRxiv ; 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36778413

ABSTRACT

Translating genetic discoveries for type 1 diabetes (T1D) into mechanistic insight can reveal novel biology and therapeutic targets but remains a major challenge. We developed the T1D Knowledge Portal (T1DKP), a disease-specific resource of genetic and functional annotation data that enables users to develop hypotheses for T1D-based research and target discovery. The T1DKP can be used to query genes and genomic regions for genetic associations, identify epigenomic features, access results of bioinformatic analyses, and obtain expert-curated resources. The T1DKP is available at http://t1d.hugeamp.org .

17.
bioRxiv ; 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36778506

ABSTRACT

Pancreatic islets are comprised of multiple endocrine cell types that produce hormones required for glucose homeostasis, and islet dysfunction is a major factor in the development of type 1 and type 2 diabetes (T1D, T2D). Numerous studies have generated gene expression profiles in individual islet cell types using single cell assays. However, there is no canonical reference of gene expression in islet cell types in both health and disease that is also easily accessible for researchers to access, query, and use in bioinformatics pipelines. Here we present an integrated reference map of islet cell type-specific gene expression from 192,203 cells derived from single cell RNA-seq assays of 65 non-diabetic, T1D autoantibody positive (Aab+), T1D, and T2D donors from the Human Pancreas Analysis Program. We identified 10 endocrine and non-endocrine cell types as well as sub-populations of several cell types, and defined sets of marker genes for each cell type and sub-population. We tested for differential expression within each cell type in T1D Aab+, T1D, and T2D states, and identified 1,701 genes with significant changes in expression in any cell type. Most changes were observed in beta cells in T1D, and, by comparison, there were almost no genes with changes in T1D Aab+. To facilitate user interaction with this reference, we provide the data using several single cell visualization and reference mapping tools as well as open-access analytical pipelines used to create this reference. The results will serve as a valuable resource to investigators studying islet biology and diabetes.

18.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-36821378

ABSTRACT

Adaptation of the islet ß cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in ß cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. ß Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Mice , Humans , Animals , Insulin Secretion/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Histones/genetics , Histones/metabolism , Epigenome , Islets of Langerhans/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Glucose/metabolism
19.
bioRxiv ; 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36711922

ABSTRACT

Altered function and gene regulation of pancreatic islet beta cells is a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of mechanisms driving T2D is still missing. Here we integrate information from measurements of chromatin activity, gene expression and function in single beta cells with genetic association data to identify disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 non-diabetic, pre-T2D and T2D donors, we robustly identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift in T2D. Subtype-defining active chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is likely induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for identifying mechanisms of complex diseases.

20.
Nat Rev Genet ; 24(1): 21-43, 2023 01.
Article in English | MEDLINE | ID: mdl-35840754

ABSTRACT

Cell type-specific gene expression patterns and dynamics during development or in disease are controlled by cis-regulatory elements (CREs), such as promoters and enhancers. Distinct classes of CREs can be characterized by their epigenomic features, including DNA methylation, chromatin accessibility, combinations of histone modifications and conformation of local chromatin. Tremendous progress has been made in cataloguing CREs in the human genome using bulk transcriptomic and epigenomic methods. However, single-cell epigenomic and multi-omic technologies have the potential to provide deeper insight into cell type-specific gene regulatory programmes as well as into how they change during development, in response to environmental cues and through disease pathogenesis. Here, we highlight recent advances in single-cell epigenomic methods and analytical tools and discuss their readiness for human tissue profiling.


Subject(s)
Epigenomics , Regulatory Sequences, Nucleic Acid , Humans , Chromatin/genetics , Promoter Regions, Genetic , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...