Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 114: 111004, 2024 02.
Article in English | MEDLINE | ID: mdl-38048856

ABSTRACT

Acute myeloid leukemia (AML) is a type of blood cancer that is characterized by the rapid growth of abnormal myeloid cells. The goal of AML treatment is to eliminate the leukemic blasts, which is accomplished through intensive chemotherapy. Cytarabine is a key component of the standard induction chemotherapy regimen for AML. However, despite a high remission rate, 70-80% of AML patients relapse and develop resistance to Cytarabine, leading to poor clinical outcomes. Mitocurcumin (MitoC), a derivative of curcumin that enters mitochondria, leading to a drop in mitochondrial membrane potential and mitophagy induction. Further, it activates oxidative stress-mediated JNK/p38 signaling to induce apoptosis. MitoC demonstrated a preferential ability to kill leukemic cells from AML cell lines and patient-derived leukemic blasts. RNA sequencing data suggests perturbation of DNA damage response and cell proliferation pathways in MitoC-treated AML. Elevated reactive oxygen species (ROS) in MitoC-treated AML cells resulted in significant DNA damage and cell cycle arrest. Further, MitoC treatment resulted in ROS-mediated enhanced levels of p21, which leads to suppression of CHK1, RAD51, Cyclin-D and c-Myc oncoproteins, potentially contributing to Cytarabine resistance. Combinatorial treatment of MitoC and Cytarabine has shown synergism, increased apoptosis, and enhanced DNA damage. Using AML xenografts, a significant reduction of hCD45+ cells was observed in AML mice bone marrow treated with MitoC (mean 0.6%; range0.04%-3.56%) compared to control (mean 38.2%; range10.1%-78%), p = 0.03. The data suggest that MitoC exploits stress-induced leukemic oxidative environment to up-regulate JNK/p38 signaling to lead to apoptosis and can potentially overcome Cytarabine resistance via ROS/p21/CHK1 axis.


Subject(s)
Curcumin , Leukemia, Myeloid, Acute , Animals , Mice , Humans , Cytarabine/pharmacology , Cytarabine/therapeutic use , Reactive Oxygen Species , Leukemia, Myeloid, Acute/genetics , Apoptosis , Oxidative Stress
2.
J Exp Clin Cancer Res ; 42(1): 186, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37507802

ABSTRACT

INTRODUCTION: The emergence of resistance to the highly successful BCL2-directed therapy is a major unmet need in acute myeloid leukemia (AML), an aggressive malignancy with poor survival rates. Towards identifying therapeutic options for AML patients who progress on BCL2-directed therapy, we studied a clinical-stage CDK7 inhibitor XL102, which is being evaluated in solid tumors (NCT04726332). MATERIALS AND METHODS: To determine the anti-proliferative effects of XL102, we performed experiments including time-resolved fluorescence resonance energy transfer, target occupancy, cell cycle and apoptosis-based assays. We also included genetically characterized primary myeloid blasts from de novo and relapsed/refractory AML patients. For mechanistic studies, CRISPR/Cas9 mediated knockout of CDK7 and c-Myc and immunoblotting were performed. NOD/SCID orthotropic and subcutaneous AML xenografts were used to determine anti-leukemic effects. To assess the synergistic effects of XL102 with Venetoclax, we performed RNA sequencing and gene set enrichment analysis using Venetoclax sensitive and resistant model systems. RESULTS: XL102, a highly specific, orally bioavailable covalent inhibitor of CDK7. Inhibitory effect on CDK7 by XL102 in primary myeloid blasts (n = 54) was in nanomolar range (mean = 300 nM; range = 4.0-952 nM). XL102 treated AML cells showed a reduction in phosphorylation levels of Serine 2/5/7 at carboxy-terminal domain of RNA polymerase II. T-loop phosphorylation of CDK1(Thr161) and CDK2(Thr160) was inhibited by XL102 in dose-dependent manner leading to cell-cycle arrest. c-Myc downregulation and enhanced levels of p53 and p21 in XL102 treated cells were observed. Increased levels of p21 and activation of p53 by XL102 were mimicked by genetic ablation of CDK7, which supports that the observed effects of XL102 are due to CDK7 inhibition. XL102 treated AML xenografts showed remarkable reduction in hCD45 + marrow cells (mean = 0.60%; range = 0.04%-3.53%) compared to vehicle control (mean = 38.2%; range = 10.1%-78%), with corresponding increase in p53, p21 and decrease in c-Myc levels. The data suggests XL102 induces apoptosis in AML cells via CDK7/c-Myc/p53 axis. RNA-sequencing from paired Venetoclax-sensitive and Venetoclax-resistant cells treated with XL102 showed downregulation of genes involved in proliferation and apoptosis. CONCLUSION: Taken together, XL102 with Venetoclax led to synergistic effects in overcoming resistance and provided a strong rationale for clinical evaluation of XL102 as a single agent and in combination with Venetoclax.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Cell Line, Tumor , Tumor Suppressor Protein p53 , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Apoptosis , Cyclin-Dependent Kinases/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Med Oncol ; 37(5): 48, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32277283

ABSTRACT

Therapy-related acute leukemias (t-ALs) represent approximately 10-20% of all acute leukemias, are frequently resistant to chemotherapy, and are associated with guarded outcomes. The national comprehensive cancer network data suggest that t-AL cases are diagnosed at increasing rates in breast cancer patients treated with chemotherapeutic agents targeting topoisomerase II. Two cases of BRCA1-mutated ovarian and breast carcinoma who developed therapy-related APL and ALL, respectively, following topoisomerase II-directed therapy were characterized. Genomic characterization of therapy-related acute promyelocytic leukemia (t-APL) revealed a unique RARA intron 2 breakpoint (Chr17: 40347487) at 3'-end of RARA corroborating breakpoint clustering in t-APL following topoisomerase II inhibition. Both cases of this series harbored germline BRCA1 mutations. The germline BRCA1 mutation in patient with t-APL was detected in exon 8 (HGVS nucleotide: c.512dupT). This mutation in t-APL is extremely rare. Interestingly, t-ALL patient in this series had a BRCA1 mutation (HGVS nucleotide: c.68_69delAG; BIC designation: 187delAG) identical to a previously reported case after the treatment of same primary disease. It is unlikely that two breast cancer patients with identical BRCA1 mutation receiving topoisomerase II-targeted agents for the primary disease developed t-AL by chance. This report highlights the development of t-AL in BRAC1-mutated hereditary breast and ovarian cancer patients and warrants further studies on functional consequences of topoisomerase inhibition in this setting.


Subject(s)
BRCA1 Protein/genetics , Carcinoma/drug therapy , Hereditary Breast and Ovarian Cancer Syndrome/drug therapy , Leukemia, Myeloid, Acute/chemically induced , Topoisomerase II Inhibitors/adverse effects , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma/genetics , Carcinoma/pathology , Female , Germ-Line Mutation , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Hereditary Breast and Ovarian Cancer Syndrome/pathology , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Middle Aged , Oncogene Proteins, Fusion/genetics , Topoisomerase II Inhibitors/therapeutic use , Translocation, Genetic , Treatment Outcome
4.
Oncol Res ; 28(3): 321-330, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32059753

ABSTRACT

Acute myeloid leukemia (AML) with NPM1 mutation is a disease driving genetic alteration with good prognosis. Although it has been suggested that NPM1 mutation induces chemosensitivity in leukemic cells, the underlying cause for the better survival of NPM1 mutated patients is still not clear. Mutant NPM1 AML has a unique microRNA and their target gene (mRNA) signature compared to wild-type NPM1. Dynamic regulation of miRNA-mRNA has been reported to influence the prognostic outcome. In the present study, in silico expression data of miRNA and mRNA in AML patients was retrieved from genome data commons, and differentially expressed miRNA and mRNA among NPM1 mutated (n = 21) and NPM1 wild-type (n = 162) cases were identified to establish a dynamic association at the molecular level. In vitro experiments using high-throughput RNA sequencing were performed on human AML cells carrying NPM1 mutated and wild-type allele. The comparison of in vitro transcriptomics data with in silico miRNA-mRNA expression network data revealed downregulation of SMC1A. On establishing miRNA-mRNA interactive pairs, it has been observed that hsa-mir-215-5p (logFC: 0.957; p = 0.0189) is involved in the downregulation of SMC1A (logFC: -0.481; p = 0.0464) in NPM1 mutated AML. We demonstrated that transient expression of NPM1 mutation upregulates miR-215-5p, which results in downregulation of SMC1A. We have also shown using a rescue experiment that neutralizing miR-215-5p reverses the effect of NPM1 mutation on SMC1A. Using the leukemic blasts from AML patients, we observed higher expression of miR-215-5p and lower expression of SMC1A in NPM1 mutated patients compared to wild-type cases. The overall survival of AML patients was significantly inferior in SMC1A high expressers compared to low expressers (20.3% vs. 58.5%, p = 0.018). The data suggest that dynamic miR-215-SMC1A regulation is potentially modulated by NPM1 mutation, which might serve as an explanation for the better outcome in NPM1 mutated AML.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Computational Biology/methods , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mutation , Nucleophosmin , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...