Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Oecologia ; 204(1): 187-198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38233688

ABSTRACT

The mat-forming fruticose lichens Cladonia stellaris and Cetraria islandica frequently co-occur on soils in sun-exposed boreal, subarctic, and alpine ecosystems. While the dominant reindeer lichen Cladonia lacks a cortex but produces the light-reflecting pale pigment usnic acid on its surface, the common but patchier Cetraria has a firm cortex sealed by the light-absorbing pigment melanin. By measuring reflectance spectra, high-light tolerance, photosynthetic responses, and chlorophyll fluorescence in sympatric populations of these lichens differing in fungal pigments, we aimed to study how they cope with high light while hydrated. Specimens of the two species tolerated high light equally well but with different protective mechanisms. The mycobiont of the melanic species efficiently absorbed excess light, consistent with a lower need for its photobiont to protect itself by non-photochemical quenching (NPQ). By contrast, usnic acid screened light at 450-700 nm by reflectance and absorbed shorter wavelengths. The ecorticate usnic species with less efficient fungal light screening exhibited a consistently lower light compensation point and higher CO2 uptake rates than the melanic lichen. In both species, steady state NPQ rapidly increased at increasing light with no signs of light saturation. To compensate for less internal shading causing light fluctuations with a larger amplitude, the usnic lichen photobiont adjusted to changing light by faster induction and faster relaxation of NPQ rapidly transforming excess excitation energy to less damaging heat. The high and flexible NPQ tracking fluctuations in solar radiation probably contributes to the strong dominance of the usnic mat-forming Cladonia in open lichen-dominated heaths.


Subject(s)
Ascomycota , Lichens , Parmeliaceae , Lichens/physiology , Ecosystem
2.
Fungal Biol ; 126(5): 375-384, 2022 05.
Article in English | MEDLINE | ID: mdl-35501033

ABSTRACT

Mat-forming lichens dominating high-latitudinal habitats vary in color and geometry. Widespread species are light greenish yellow (usnic acid) and reflect solar radiation, whereas melanic species absorbing most solar wavelengths are spatially more restricted. Color thereby influences lichens' energy budget and thus their hydration and photosynthetically active periods. By using well-defined cushions from early successional stages on glacier forelands - three melanic(m) and three usnic(u) mat-forming lichens with hair-like branches (Alectoria ochroleuca(u), Gowardia nigricans(m)), hollow terete branches (Cladonia uncialis(u), Cetraria muricata(m)), and flat branches (Flavocetraria nivalis(u), Cetraria islandica(m)) - we quantified hydration traits and analyzed how color and cushion size affect water loss rate (WLR) and duration of active periods. Main findings: 1) WLR declined with cushion size and was highest in melanic lichens. 2) Active periods were longer for usnic than for melanic lichens and increased with size in all groups. 3) Size, color, and taxon nested in color significantly influenced WLR and duration of active periods in linear mixed models. 4) Hair lichen cushions had shorter active periods than growth forms with terete or flat branches due to their more open canopy architecture and lower water holding capacity (WHC). 5) WHC measured for isolated branches highly underestimated WHC for intact cushions.


Subject(s)
Lichens , Ecosystem , Ice Cover , Sunlight , Water
3.
Planta ; 253(1): 14, 2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33392847

ABSTRACT

MAIN CONCLUSION: During desiccation, both apparent electron transport rate (ETRapp) and photosynthetic CO2 uptake peak when external water has evaporated. External water, causing suprasaturation, weakens the strong correlation between ETRapp and CO2 uptake. Lichens are poikilohydric organisms passively regulated by ambient conditions. In theory, apparent electron transport rate (ETRapp), estimated by photosystem II yield measured in light (ΦPSII), is a proxy of photosynthetic CO2 uptake. Hydration level, however, is a complicating factor, particularly during suprasaturation that strongly reduces CO2 diffusion. Here, the cephalolichen Lobaria pulmonaria and two chlorolichens Parmelia sulcata and Xanthoria aureola were excessively hydrated before photosynthetic CO2 uptake and ΦPSII using imaging fluorescence tools were simultaneously measured while drying at 200 µmol photons m-2 s-1. CO2 uptake peaked when hydration had declined to a level equivalent to their respective internal water holding capacity (WHCinternal) i.e., the water per thallus area after blotting external water. CO2 uptake and ETRapp in all species were highly correlated at hydration levels below WHCinternal, but weaker at higher hydration (chlorolichens) or absent (cephalolichen). Yet, at a specimen level for the two chlorolichens, the correlation was strong during suprasaturation. The CO2 uptake-ETRapp relationship did not differ between measured species, but may vary between other lichens because the slope depends on cortical transmittance and fraction of electrons not used for CO2 uptake. For new lichen species, calibration of ETRapp against CO2 uptake is therefore necessary. At intrathalline scales, ΦPSII during drying initially increased along thallus margins before reaching maximum values in central portions when hydration approached WHCinternal. WHCinternal represents the optimal hydration level for lichen photosynthesis. In conclusion, ETRapp is an easily measured and reliable proxy of CO2 uptake in thalli without external water but overestimates photosynthesis during suprasaturation.


Subject(s)
Carbon Dioxide , Electron Transport , Lichens , Ascomycota/metabolism , Carbon Dioxide/metabolism , Chlorophyll , Lichens/metabolism , Light , Parmeliaceae/metabolism , Photosynthesis/physiology
4.
Fungal Biol ; 124(10): 903-913, 2020 10.
Article in English | MEDLINE | ID: mdl-32948278

ABSTRACT

Although water is essential for photosynthetic activation in lichens, rates of vapor uptake and activation in humid air, which likely influence their niche preferences and distribution ranges, are insufficiently known. This study simultaneously quantifies rehydration kinetics and PSII reactivation in sympatric, yet morphologically and functionally distinct cephalolichens (Lobaria amplissima, Lobaria pulmonaria, Lobaria virens). High-temporal resolution monitoring of rehydrating thalli by automatic weighing combined with chlorophyll fluorescence imaging of maximal PSII efficiency (FV/FM) was applied to determine species-specific rates of vapor uptake and photosynthetic activation. The thin and loosely attached growth form of L. pulmonaria rehydrates and reactivates faster in humid air than the thick L. amplissima, with L. virens in between. This flexible hydration strategy is consistent with L. pulmonaria's wide geographical distribution stretching from rainforests to continental forests. By contrast, the thick and resupinate L. amplissima reactivates slowly in humid air but stores much water when provided in abundance. This prolongs active periods after rain, which could represent an advantage where abundant rain and stem flow alternates with long-lasting drying. Understanding links between morphological traits and functional responses, and their ecological implications for species at risk, is crucial to conservation planning and for modelling populations under various climate scenarios.


Subject(s)
Forests , Lichens , Water/physiology , Ascomycota , Lichens/physiology
5.
Planta ; 250(6): 2023-2031, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31542811

ABSTRACT

MAIN CONCLUSION: Photobiont type influences the relative humidity threshold at which photosystem II activates in green algal lichens. Water vapor uptake alone can activate photosynthesis in lichens with green algal photobionts. However, the minimum relative humidity needed for activation is insufficiently known. The objective of this study was to quantify the humidity threshold for photosystem II (PSII) activation in a range of chlorolichen species associated with photobionts from Trebouxiaceae, Coccomyxaceae and Trentepohliaceae. These lichens exhibit distribution, habitat and substrate patterns that are likely coupled to their efficiency in utilizing water vapor at lower levels of relative humidity (RH) for photosynthesis. Using chlorophyll fluorescence imaging during water uptake from humid air of 25 species of chlorolichens representing the above photobiont groups, we monitored PSII activation within controlled chambers with constant RH at five levels ranging from 75.6 to 95.4%. The results demonstrate clear photobiont-specific activation patterns: the trentepohlioid lichens activated PSII at significantly lower RH (75.6%) than trebouxioid (81.7%) and coccomyxoid (92.0%) lichens. These responses are consistent with a preference for warm and sheltered habitats for trentepohlioid lichens, with cool and moist habitats for the coccomyxoid lichens, and with a more widespread occurrence of the trebouxioid lichens. Within each photobiont group, lichen species exposed to marine aerosols in their source habitats seemed to be activated at lower RH than lichens sampled from inland sites. High osmolyte concentration may therefore play a role in lowering a photobiont's activation threshold. We conclude that photobiont type influences water vapor-driven photosynthetic activation of lichens, thereby shaping the ecological niches in which they occur.


Subject(s)
Lichens/metabolism , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Humidity , Optical Imaging , Symbiosis
6.
Plant Physiol Biochem ; 134: 123-128, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30337144

ABSTRACT

Lichen photobionts in situ have an extremely UV-B tolerant photosystem II efficiency (Fv/Fm). We have quantified the UV-B-screening offered by the mycobiont and the photobiont separately. The foliose lichens Nephroma arcticum and Umbilicaria spodochroa with 1: intact or 2: removed cortices were exposed to 0.7 Wm-2 UV-BBE for 4 h. Intact thalli experienced no reduction in Fv/Fm, whereas cortex removal lowered Fv/Fm in exposed photobiont layers by 22% for U. spodochroa and by 14% for N. arcticum. We also gave this UV-B dose to algal cultures of Coccomyxa and Trebouxia, the photobiont genera of N. arcticum and U. spodochroa, respectively. UV-B caused a 56% reduction in Fv/Fm for Coccomyxa, and as much as 98% in Trebouxia. The fluorescence excitation ratio (FER) technique comparing the fluorescence from UV-B or UV-A-excitation light with blue green excitation light using a Xe-PAM fluorometer showed that these photobiont genera did not screen any UV-B or UV-A The FER technique with a Multiplex fluorometer estimated the UV-A screening of isolated algae to be 13-16%, whereas intact lichens screened 92-95% of the UV-A. In conclusion, the cortex of N. arcticum and U. spodochroa transmitted no UV-B and little UV-A to the photobiont layer beneath. Thereby, the upper lichen cortex forms an efficient fungal solar radiation screen providing a high UV-B tolerance for studied photobionts in situ. By contrast, isolated photobionts have no UV-B screening and thus depend on their fungal partners in nature.


Subject(s)
Adaptation, Physiological/radiation effects , Ascomycota/physiology , Lichens/radiation effects , Photosystem II Protein Complex/metabolism , Ultraviolet Rays , Fluorometry , Symbiosis
7.
Planta ; 249(3): 709-718, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30374913

ABSTRACT

MAIN CONCLUSION: Chlorophyll fluorescence, infrared gas exchange and photoinhibition data consistently show that vulpinic acid in L. vulpina functions as a strong blue light screening compound. The cortical lichen compounds, parietin, atranorin, usnic acid and melanins are known to screen photosynthetically active radiation (PAR), thereby protecting the underlying photobionts. The role of the toxic UV-/blue light-absorbing vulpinic acid in lichen cortices is poorly documented. By comparing controls with acetone-rinsed Letharia vulpina thalli (75% reduced vulpinic acid concentration), we aimed to test PAR screening by vulpinic acid. We exposed such thalli to blue, green and red irradiance, respectively, and recorded light quality-specific light saturation curves of CO2 uptake, quantum yields of CO2 uptake (QYCO2) and effective quantum yields of PSII (ΦPSII). We also quantified light quality-dependent photoinhibition after 4-h exposure to 400 µmol photons m-2 s-1. In controls, the greatest high light-induced reductions in CO2 uptake and ΦPSII, as well as the strongest photoinhibition [lowered maximal quantum yield of PSII (Fv/Fm)], occurred in red light, followed by green, and was low in blue light. Removal of vulpinic acid significantly exacerbated photoinhibition, reduced ΦPSII, and increased QYCO2 in blue light. By contrast, acetone rinsing had no or weak effects in green and red lights. Comparing control with acetone-rinsed thalli, blue light screening was estimated at 69% using ΦPSII data and 49% using QYCO2. To compensate for the 25% residual vulpinic acid left after rinsing, we repeated the screening estimation by comparing responses in blue and red lights. This resulted in 88% screening using ΦPSII data and 77% using QYCO2. The consistent responses in all photosynthetic parameters support the hypothesis that vulpinic acid functions as a blue light screen in L. vulpina.


Subject(s)
Furans/metabolism , Parmeliaceae/metabolism , Phenylacetates/metabolism , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chlorophyll/radiation effects , Color , Furans/isolation & purification , Furans/radiation effects , Light , Parmeliaceae/radiation effects , Phenylacetates/isolation & purification , Phenylacetates/radiation effects
8.
Plant Physiol Biochem ; 132: 89-94, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30176432

ABSTRACT

Lichen photobionts in situ have an extremely UV-B tolerant photosystem II efficiency (Fv/Fm). We have quantified the UV-B-screening offered by the mycobiont and the photobiont separately. The foliose lichens Nephroma arcticum and Umbilicaria spodochroa with 1: intact or 2: removed cortices were exposed to 0.7 Wm-2 UV-BBE for 4 h. Intact thalli experienced no reduction in Fv/Fm, whereas cortex removal lowered Fv/Fm in exposed photobiont layers by 22% for U. spodochroa and by 14% for N. arcticum. We also gave this UV-B dose to algal cultures of Coccomyxa and Trebouxia, the photobiont genera of N. arcticum and U. spodochroa, respectively. UV-B caused a 56% reduction in Fv/Fm for Coccomyxa, and as much as 98% in Trebouxia. The fluorescence excitation ratio (FER) technique comparing the fluorescence from UV-B or UV-A-excitation light with blue green excitation light using a Xe-PAM fluorometer showed that these photobiont genera did not screen any UV-B or UV-A The FER technique with a Multiplex fluorometer estimated the UV-A screening of isolated algae to be 13-16%, whereas intact lichens screened 92-95% of the UV-A. In conclusion, the cortex of N. arcticum and U. spodochroa transmitted no UV-B and little UV-A to the photobiont layer beneath. Thereby, the upper lichen cortex forms an efficient fungal solar radiation screen providing a high UV-B tolerance for studied photobionts in situ. By contrast, isolated photobionts have no UV-B screening and thus depend on their fungal partners in nature.


Subject(s)
Adaptation, Physiological/radiation effects , Lichens/microbiology , Lichens/physiology , Photosystem II Protein Complex/metabolism , Ultraviolet Rays , Fluorometry , Lichens/radiation effects , Symbiosis
9.
Cryobiology ; 82: 124-129, 2018 06.
Article in English | MEDLINE | ID: mdl-29571630

ABSTRACT

Lichens are considered freezing tolerant, although few species have been tested. Growth, a robust measure of fitness integrating processes in all partners of a lichen thallus, has not yet been used as a viability measure after freezing. We compared relative growth rates (RGR) after freezing with short-term viability measures of photo- and mycobiont functions in the coastal Lobaria virens and the widespread L. pulmonaria to test the hypothesis that low temperature shapes the coastal distribution of L. virens. Hydrated thalli from sympatric populations were subjected to freezing at -10, -20 and -40 °C for 5 h. The rate of cooling and subsequent warming was 5 °C h-1. Short-term viability measures of photobiont (maximal photosystem II efficiency, effective PSII yield) and mycobiont viability (conductivity index), as well as subsequent RGR, were assessed. The exotherms showed that L. virens froze at -3 °C; L. pulmonaria, at -4 °C. Freezing significantly impaired short-term viability measures of both photo- and mycobiont, particularly in the coastal species. Lobaria pulmonaria grew 2.1 times faster than L. virens, but the short-term damage after one freezing event did not affect the long-term RGR in any species. Thereby, short-term responses were impaired by freezing, long-term responses were not. While the lacking RGR-responses to freezing suggest that freezing tolerance does not shape the coastal distribution of L. virens, the significant reported adverse short-term effects in L. virens may be aggravated by repeated freezing-thawing cycles in cold winters. In such a perspective, repeated freezing may eventually lead to reduced long-term fitness in L. virens.


Subject(s)
Cold Temperature/adverse effects , Freezing/adverse effects , Lichens/growth & development , Lichens/physiology , Adaptation, Physiological/physiology , Cell Membrane/pathology , Photosystem II Protein Complex/physiology , Seasons
10.
Ann Bot ; 121(1): 175-182, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29155927

ABSTRACT

Background and aims: Understanding to what extent parasites affect host fitness is a focus of research on ecological interactions. Fungal parasites usually affect the functions of vascular plants. However, parasitic interactions comprising effects of fungal parasites on the fitness of lichen hosts are less well known. This study assesses the effects of the abundance of two highly specialized gall-forming fungi on growth of their two respective lichen hosts and tests whether these fungal parasites reduce lichen fitness. Methods: The relative biomass and thallus area growth rates, and change in specific thallus mass of Lobaria pulmonaria and L. scrobiculata were compared between lichens with and without galls of the lichenicolous fungi Plectocarpon lichenum and P. scrobiculatae, cultivated in a growth chamber for 14 d. By estimating the thallus area occupied by the galls, it was also assessed whether growth rates varied with effective photosynthetic lichen surface area. Key results: Plectocarpon galls significantly reduced relative growth rates of the lichen hosts. Growth rates decreased with increasing cover of parasitic galls. The presence of Plectocarpon-galls per se, not the reduced photosynthetic thallus surface due to gall induction, reduced relative growth rates in infected hosts. Specific thallus mass in the hosts changed in species-specific ways. Conclusions: This study shows that specialized fungal parasites can reduce lichen fitness by reducing their growth rates. Higher parasite fitness correlated with lower host fitness, supporting the view that these associations are antagonistic. By reducing hosts' growth rates, these parasites in their symptomatic life stage may affect important lichen functions. This fungal parasite-lichen study widens the knowledge on the ecological effects of parasitism on autotrophic hosts and expands our understanding of parasitic interactions across overlooked taxonomic groups.


Subject(s)
Ascomycota/physiology , Lichens/microbiology , Lichens/growth & development , Photosynthesis , Plant Tumors/microbiology
12.
New Phytol ; 211(4): 1352-7, 2016 09.
Article in English | MEDLINE | ID: mdl-27094697

ABSTRACT

Lichens are hosts for a variety of lichenicolous fungi. By investigating two lichens with specialized parasites, we will test the hypothesis that these parasites reduce lichen fitness by increasing the palatability of their respective hosts. The palatability of Lobarina scrobiculata and Lobaria pulmonaria with or without galls of the lichenicolous fungi, Plectocarpon scrobiculatae and P. lichenum, respectively, were quantified in a feeding-preference experiment with grazing snails (Cepaea hortensis). We repeated the experiment for pairs with or without gall in which the carbon-based secondary compounds (CBSCs) had been reduced nondestructively by acetone rinsing. Lichens with galls had lower concentration of CBSCs than those without, but this contrast disappeared after acetone rinsing. In the lichen high in nitrogen (N) (the cyanolichen L. scrobiculata), the grazing was low, and the snails did not discriminate between specimens with and without Plectocarpon-galls. In L. pulmonaria low in N (green algae as main photobiont), the parasite reduced the lichen C : N ratio and the snails strongly preferred specimens with Plectocarpon-galls, regardless of whether CBSC concentration had been reduced or not. In conclusion, some lichen parasites can indirectly reduce lichen fitness by increasing its palatability and thus the grazing pressure from snails, whereas other parasites do not affect grazing preferences.


Subject(s)
Ascomycota/physiology , Food Chain , Lichens/microbiology , Parasites/physiology , Snails/microbiology , Animals , Carbon/metabolism , Feeding Behavior , Nitrogen/metabolism
13.
Sci Total Environ ; 541: 795-801, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26437350

ABSTRACT

Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.


Subject(s)
Air Pollutants/metabolism , Environmental Monitoring , Lichens/metabolism , Metals, Heavy/metabolism , Ascomycota/metabolism , Carbon/metabolism , Motor Vehicles , Norway
14.
New Phytol ; 208(3): 750-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26017819

ABSTRACT

This growth chamber experiment evaluates how temperature and humidity regimes shape soluble carbohydrate pools and growth rates in lichens with different photobionts. We assessed soluble carbohydrates, relative growth rates (RGRs) and relative thallus area growth rates (RTA GRs) in Parmelia sulcata (chlorolichen), Peltigera canina (cyanolichen) and Peltigera aphthosa (cephalolichen) cultivated for 14 d (150 µmol m(-2) s(-1) ; 12-h photoperiod) at four day : night temperatures (28 : 23°C, 20 : 15°C, 13 : 8°C, 6 : 1°C) and two hydration regimes (hydration during the day, dry at night; hydration day : night). The major carbohydrates were mannitol (cephalolichen), glucose (cyanolichen) and arabitol (chlorolichen). Mannitol occurred in all species. During cultivation, total carbohydrate pools decreased in cephalo-/cyanolichens, but increased in the chlorolichen. Carbohydrates varied less than growth with temperature and humidity. All lichens grew rapidly, particularly at 13 : 8°C. RGRs and RTA GRs were significantly higher in lichens hydrated for 24 h than for 12 h. Strong photoinhibition occurred in cephalo- and cyanolichens kept in cool dry nights, resulting in positive relationships between RGR and dark-adapted photosystem II (PSII) efficiency (Fv /Fm ). RGR increased significantly with the photobiont-specific carbohydrate pools within all species. Average RGR peaked in the chlorolichen lowest in total and photobiont carbohydrates. Nocturnal hydration improved recovery from photoinhibition and/or enhanced conversion rates of photosynthates into growth.


Subject(s)
Carbohydrate Metabolism , Humidity , Parmeliaceae/growth & development , Parmeliaceae/metabolism , Temperature , Chlorophyll/metabolism , Lichens
15.
Ecology ; 95(6): 1464-71, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25039211

ABSTRACT

Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy.


Subject(s)
Ecosystem , Fungi/physiology , Lichens/physiology , Pigments, Biological/physiology , Trees/physiology , Norway , Sunlight , Sweden , Water
16.
Plant Cell Physiol ; 55(8): 1404-14, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24847151

ABSTRACT

Photosynthesis was compared in two cyanobacterial lichens (Lobaria hallii and Peltigera praetextata) and two green algal lichens (Lobaria pulmonaria and Peltigera leucophlebia) exposed to red, green or blue light. Cyanolichens had substantially lower photosynthetic CO(2) uptake and O(2) evolution than the green algal lichens in blue light, but slightly higher photosynthesis in red and green light. The effective quantum yield of photosystem (PS) II (Φ(PSII)) decreased with increasing red and green light for all species, but in blue light this response occurred in green algal lichens only. Cyanolichen Φ(PSII) increased with increasing blue light at low irradiances, but decreased at stronger exposures. However, after adding red light the efficiency of blue light for photosynthetic O(2) evolution increased by 2.4 times. Because phycobilisomes associated with PSII have a low blue light absorption, our results are consistent with blue light absorption mainly by Chl in PSI. Thereby, unequal allocation of excitation energy between PSII and PSI results in low cyanolichen photosynthesis under blue light. This is new knowledge in the science of lichenology with important implications for e.g. the reliability of using Chl fluorometers with blue light for cyanolichens.


Subject(s)
Ascomycota/physiology , Chlorophyta/physiology , Cyanobacteria/physiology , Lichens/physiology , Photosynthesis/physiology , Ascomycota/radiation effects , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chlorophyta/radiation effects , Cyanobacteria/radiation effects , Electron Transport , Lichens/radiation effects , Light , Oxygen/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Phycobilisomes/metabolism
17.
Phytochemistry ; 94: 91-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23664176

ABSTRACT

Acetone-extractable carbon based secondary compounds (CBSCs) were quantified in two epiphytic lichens to study possible effects of external factors (season and aspect) on secondary chemistry and to relate defense investments to biomass growth and changes in specific thallus mass (STM). At the end of four separate annual cycles starting in each of the four seasons, the cyanolichen Lobaria scrobiculata and the cephalolichen Lobaria pulmonaria (green algae as the primary photobiont and with localized Nostoc in internal cephalodia) were monitored in their natural forest habitats and after being transplanted at three contrasting aspects in open sites. Season strongly influenced most CBSCs. Medullary CBSCs in both species were twice as high in summer as in winter. Aspect hardly affected major CBSCs, whereas transplantation from forest to clear-cut slightly reduced these compounds. No major CBSCs in any species showed a trade-off with growth rate. Dry matter- as well as thallus area-based medullary CBSC contents increased with STM. The cortical usnic acid strongly increased with growth rate and followed spatial, but not seasonal variations in light exposure. Maximal CBSC levels during seasons with most herbivores is consistent with the hypothesis inferring that herbivory is a major selective force for CBSCs. Lack of trade-off between growth and defence investments suggests that these two processes do not compete for photosynthates.


Subject(s)
Carbon/metabolism , Chlorophyta/metabolism , Cyanobacteria/metabolism , Lichens/metabolism , Seasons , Benzofurans/metabolism , Biomass , Carbon/chemistry , Chlorophyta/growth & development , Chlorophyta/radiation effects , Cyanobacteria/growth & development , Cyanobacteria/radiation effects , Ecosystem , Lichens/growth & development , Lichens/radiation effects , Light , Trees/microbiology
18.
Planta ; 237(5): 1359-66, 2013 May.
Article in English | MEDLINE | ID: mdl-23389675

ABSTRACT

This study investigates how hydration during light and dark periods influences growth in two epiphytic old forest lichens, the green algal Lobaria pulmonaria and the cyanobacterial L. scrobiculata. The lichens were cultivated in growth chambers for 14 days (200 µmol m(-1) s(-2); 12 h photoperiod) at four temperature regimes (25/20 °C, 21/16 °C, 13/8 °C, and 6/1 °C; day/night temperatures) and two hydration regimes (12 h day-time hydration; 12 h day-time + 12 h night-time hydration). Growth was highly dynamic, showing that short-term growth experiments in growth cabinets have a high, but largely unexplored potential in functional lichen studies. The highest measured growth rates were not far from the maximal dry matter gain estimated from published net photosynthetic CO2 uptake data. For the entire data set, photobiont type, temperature, hydration regime and specific thallus mass accounted for 46.6 % of the variation in relative growth rate (RGR). Both species showed substantially higher relative growth rates based on both biomass (RGR) and thallus area (RTAGR) when they were hydrated day and night compared to hydration in light only. Chronic photoinhibition was substantial in thalli hydrated only during the day time and kept at the highest and lowest temperature regimes, resulting in exponential increases in RGR with increasing maximal PSII efficiency (F v/F m) in both species. However, the depression in F v/F m was stronger for the cyanolichen than for the cephalolichen at extreme temperatures. The growth-stimulating effect of night-time hydration suggests that nocturnal metabolic activity improves recovery of photoinhibition and/or enhances the conversion rate of photosynthates into thallus extension.


Subject(s)
Lichens/radiation effects , Light , Biomass , Chlorophyll/metabolism , Lichens/growth & development , Lichens/metabolism
19.
New Phytol ; 195(4): 812-822, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22762452

ABSTRACT

Desiccation tolerance was quantified in four cyanolichens (Lobaria hallii, Lobaria retigera, Lobaria scrobiculata, Pseudocyphellaria anomala), one cephalolichen (Lobaria pulmonaria) and one chlorolichen (Platismatia glauca) from xeric and mesic, open and closed North American boreal forests. These sympatric epiphytes were exposed to 0%, 33%, 55% and 75% relative humidity with or without medium light (200 µmol m⁻² s⁻¹) for 7 d. Permanent and temporary photoinhibitory damage was recorded as viability measures. All species tolerated well the drying in darkness, but L. hallii and L. retigera, associated with a very humid climate, showed minor damage at the hardest drying (silica gel). Simultaneous exposure to medium light severely aggravated the drying damage at all relative humidity levels. Combined drying-light exposure was particularly devastating for the widespread chloro- and cephalolichens, whereas cyanolichens, including rare old forest species, were fairly resistant. The ability to recover after combined drying-light stress (this study) correlated positively with increasing species-specific water holding capacities (from the literature). Cyanolichens, depending on liquid water and large internal water storage, probably require strong drying-light resistance to handle long periods between hydration events, whereas chlorolichens can regularly maintain their photosynthetic apparatus during frequent and rapid activation by humid air on clear mornings.


Subject(s)
Adaptation, Physiological/radiation effects , Desiccation , Lichens/physiology , Lichens/radiation effects , Light , Trees/physiology , Trees/radiation effects , Analysis of Variance , British Columbia , Climate , Ecosystem , Kinetics , Photosystem II Protein Complex/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Solutions , Water/metabolism
20.
New Phytol ; 194(4): 991-1000, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22452484

ABSTRACT

Growth in two old forest lichens was studied to evaluate how temporal (seasonal) and spatial (aspect-wise) partitioning of biomass and area growth respond to seasonal changes in light and climate. We monitored relative growth rates during annual courses in the cephalolichen Lobaria pulmonaria and the cyanolichen Lobaria scrobiculata transplanted in boreal clear-cut to five fixed aspects in winter, spring, summer, and autumn. For each annual set, growth was quantified in January-March, April-June, July-September and October-December. Mean biomass and area increased in all seasons, but growth was highest in July-September. Mass growth did not follow area increment during a year. As a result, mass per area (specific thallus mass (STM)) declined (L. scrobiculata) or stayed constant (L. pulmonaria) in the dark, humid October-December season, whereas it strongly increased in the dry, sunny April-June season. Aspect influenced growth in species-specific ways. Seasonality in biomass growth mainly followed light availability, whereas area growth was strongest during humid seasons. The substantial STM changes across seasons, species, and aspects can be explained as passive responses to seasonal climate. However, as STM, according to the literature, is a driver of water storage, recorded changes probably improve fitness by prolonging hydration in places or during times with high evaporative demands.


Subject(s)
Biomass , Lichens/growth & development , Seasons , Light
SELECTION OF CITATIONS
SEARCH DETAIL