Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3863, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769315

ABSTRACT

Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.


Subject(s)
Evolution, Molecular , Extraterrestrial Environment , Mars , Perchlorates , RNA, Catalytic , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , Perchlorates/metabolism
2.
Cell Syst ; 15(1): 49-62.e4, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38237551

ABSTRACT

Synthetic minimal cells are a class of bioreactors that have some, but not all, functions of live cells. Here, we report a critical step toward the development of a bottom-up minimal cell: cellular export of functional protein and RNA products. We used cell-penetrating peptide tags to translocate payloads across a synthetic cell vesicle membrane. We demonstrated efficient transport of active enzymes and transport of nucleic acid payloads by RNA-binding proteins. We investigated influence of a concentration gradient alongside other factors on the efficiency of the translocation, and we show a method to increase product accumulation in one location. We demonstrate the use of this technology to engineer molecular communication between different populations of synthetic cells, to exchange protein and nucleic acid signals. The synthetic minimal cell production and export of proteins or nucleic acids allows experimental designs that approach the complexity and relevancy of natural biological systems. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Artificial Cells , Cell-Penetrating Peptides , Nucleic Acids , Nucleic Acids/metabolism , Artificial Cells/metabolism , Proteins , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism
3.
ACS Synth Biol ; 12(4): 1371-1376, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37018763

ABSTRACT

Recently, a new subset of fluorescent proteins has been identified from the Aequorea species of jellyfish. These fluorescent proteins were characterized in vivo; however, there has not been validation of these proteins within cell-free systems. Cell-free systems and technology development is a rapidly expanding field, encompassing foundational research, synthetic cells, bioengineering, biomanufacturing, and drug development. Cell-free systems rely heavily on fluorescent proteins as reporters. Here we characterize and validate this new set of Aequorea proteins for use in a variety of cell-free and synthetic cell expression platforms.


Subject(s)
Bioengineering , Coloring Agents , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Cell-Free System
4.
ACS Omega ; 8(7): 7045-7056, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36844541

ABSTRACT

Synthetic minimal cells provide a controllable and engineerable model for biological processes. While much simpler than any live natural cell, synthetic cells offer a chassis for investigating the chemical foundations of key biological processes. Herein, we show a synthetic cell system with host cells, interacting with parasites and undergoing infections of varying severity. We demonstrate how the host can be engineered to resist infection, we investigate the metabolic cost of carrying resistance, and we show an inoculation that immunizes the host against pathogens. Our work expands the synthetic cell engineering toolbox by demonstrating host-pathogen interactions and mechanisms for acquiring immunity. This brings synthetic cell systems one step closer to providing a comprehensive model of complex, natural life.

5.
J Biol Eng ; 17(1): 4, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36691081

ABSTRACT

BACKGROUND: Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. In addition, the yields of transcription in cell-free systems lag behind transcriptional efficiency of live cells. Most commonly used in vitro translation systems utilize T7 RNA polymerase, which is also the enzyme included in many commercial kits. RESULTS: Here we present characterization of a variant of T7 RNA polymerase promoter that acts to significantly increase the yields of gene expression within in vitro systems. We have demonstrated that T7Max increases the yield of translation in many types of commonly used in vitro protein expression systems. We also demonstrated increased protein expression yields from linear templates, allowing the use of T7Max driven expression from linear templates. CONCLUSIONS: The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- based in vitro protein expression system.

6.
ACS Synth Biol ; 11(2): 855-866, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35089706

ABSTRACT

Synthetic cells can mimic the intricate complexities of live cells, while mitigating the level of noise that is present natural systems; however, many crucial processes still need to be demonstrated in synthetic cells to use them to comprehensively study and engineer biology. Here we demonstrate key functionalities of synthetic cells previously available only to natural life: differentiation and mating. This work presents a toolset for engineering combinatorial genetic circuits in synthetic cells. We demonstrate how progenitor populations can differentiate into new lineages in response to small molecule stimuli or as a result of fusion, and we provide practical demonstration of utility for metabolic engineering. This work provides a tool for bioengineering and for natural pathway studies, as well as paving the way toward the construction of live artificial cells.


Subject(s)
Artificial Cells , Artificial Cells/metabolism , Bioengineering , Cell Communication , Gene Regulatory Networks , Metabolic Engineering , Synthetic Biology
7.
Adv Biol (Weinh) ; 5(3): e2000188, 2021 03.
Article in English | MEDLINE | ID: mdl-33729692

ABSTRACT

Building a live cell from non-living building blocks would be a fundamental breakthrough in biological sciences, and it would enable engineering new lineages of life, not directly descendant of the Last Universal Common Ancestor. Fully engineered synthetic cells will have architectures that can be radically different from the natural cells, yet most life processes reconstituted in synthetic cells so far are built from natural and biosimilar building blocks. Most natural processes have already been reconstituted in synthetic cell chassis. This paper summarizes recent advancements in using non-living building blocks to reconstitute some of the most crucial features of living systems in a fully engineerable chassis of a synthetic cell.


Subject(s)
Artificial Cells
8.
Biochem Mol Biol Educ ; 48(5): 448-451, 2020 09.
Article in English | MEDLINE | ID: mdl-32604463

ABSTRACT

Structural biology education commonly employs molecular visualization software, such as PyMol, RasMol, and VMD, to allow students to appreciate structure-function relationships in biomolecules. In on-ground, classroom-based education, these programs are commonly used on University-owned devices with software preinstalled. Remote education typically involves the use of student-owned devices, which complicates the use of such software, owing to the fact that (a) student devices have differing configurations (e.g., Windows vs MacOS) and processing power, and (b) not all student devices are suitable for use with such software. Smartphones are near-ubiquitous devices, with smartphone ownership exceeding personal computer ownership, according to a recent survey. Here, we show the use of a smartphone-based augmented reality app, Augment, in a structural biology classroom exercise, which students installed independently without IT support. Post-lab attitudinal survey results indicate positive student experiences with this app. Based on our experiences, we suggest that smartphone-based molecular visualization software, such as that used in this exercise, is a powerful educational tool that is particularly well-suited for use in remote education.


Subject(s)
Augmented Reality , Education, Distance , Molecular Biology/education , Smartphone , Software , Humans
9.
RNA ; 26(9): 1283-1290, 2020 09.
Article in English | MEDLINE | ID: mdl-32482894

ABSTRACT

Isothermal, cell-free, synthetic biology-based approaches to pathogen detection leverage the power of tools available in biological systems, such as highly active polymerases compatible with lyophilization, without the complexity inherent to live-cell systems, of which nucleic acid sequence based amplification (NASBA) is well known. Despite the reduced complexity associated with cell-free systems, side reactions are a common characteristic of these systems. As a result, these systems often exhibit false positives from reactions lacking an amplicon. Here we show that the inclusion of a DNA duplex lacking a promoter and unassociated with the amplicon fully suppresses false positives, enabling a suite of fluorescent aptamers to be used as NASBA tags (Apta-NASBA). Apta-NASBA has a 1 pM detection limit and can provide multiplexed, multicolor fluorescent readout. Furthermore, Apta-NASBA can be performed using a variety of equipment, for example, a fluorescence microplate reader, a qPCR instrument, or an ultra-low-cost Raspberry Pi-based 3D-printed detection platform using a cell phone camera module, compatible with field detection.


Subject(s)
Aptamers, Nucleotide/chemistry , Fluorescent Dyes/chemistry , Oligonucleotides/chemistry , Polymerase Chain Reaction/methods , Self-Sustained Sequence Replication/methods , Cell-Free System , Fluorescence , Humans , Promoter Regions, Genetic/genetics , Sensitivity and Specificity
10.
Science ; 368(6491): 587-588, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32381709
SELECTION OF CITATIONS
SEARCH DETAIL
...