Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Dent Mater ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851967

ABSTRACT

This work aims to demonstrate the effect of ZrO2 and MgO inclusion into the Poly(methyl methacrylate) (PMMA). To fabricate novel hybrid composites via heat cure method, various composites (PZM2, PZM4 and PZM6) were synthesized in the system [(95-x) PMMA + 5 ZrO2 + x MgO] (x = 2, 4, and 6) respectively. Density of the prepared composites were determined and varying between 1.035-1.152 g/cm3. X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) followed by EDAX and mechanical testing were performed to evaluate the fabricated composite properties. Moreover, to explore the structure of the fabricated composites the 13 C CP-MAS SSNMR and 1 H-13 C Phase-Modulated Lee Goldberg (PMLG) HETCOR Spectrum were recorded which clarify chemical shifting and motional dynamics of the composites. Mechanical tests were performed by UTM and the obtained parameters such as compressive strength, Young's modulus, fracture toughness, brittleness coefficient, flexural strength and flexural modulus are found to be in the range of 91-100 MPa, 0.48-0.51 GPa, 9.122-9.705 MPa.m1/2, 0.66-0.815, 51.03-42.78 MPa and 499-663 MPa respectively. Some more mechanical parameters such as proportional limit, elastic limit, failure strength, modulus of resilience and modulus of toughness were also calculated. Furthermore, tribological properties were also determined and the coefficient of friction (COF) was decreased by 17.4 % and 38 % for composite PZM6 at 20 N and 40 N as compared to the composite PZM2 and the lowest wear volume of 1.55 mm3 was observed for PZM2, whereas the maximum volume loss of 5.64 mm3 is observed for composite PZM6. To check out the biocompatibility, cytotoxicity and genotoxicity of the fabricated composites the Trypan-blue assay was also performed for PZM2 and PZM6 composites. Dissection on the gut of larvae was also performed on the both composites followed by DAPI and DCFH-DA staining. Therefore, these synthesized samples can be used for the fabrication of denture materials.

2.
Sci Rep ; 14(1): 2128, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38267527

ABSTRACT

The most common denture material used for dentistry is poly-methyl-methacrylate (PMMA). Usually, the polymeric PMMA material has numerous biological, mechanical and cost-effective shortcomings. Hence, to resolve such types of drawbacks, attempts have been made to investigate fillers of the PMMA like alumina (Al2O3), silica (SiO2), zirconia (ZrO2) etc. For the enhancement of the PMMA properties a suitable additive is required for its orthopedic applications. Herein, the main motive of this study was to synthesize a magnesium oxide (MgO) reinforced polymer-based hybrid nano-composites by using heat cure method with superior optical, biological and mechanical characteristics. For the structural and vibrational studies of the composites, XRD and FT-IR were carried out. Herein, the percentage of crystallinity for all the fabricated composites were also calculated and found to be 14.79-30.31. Various physical and optical parameters such as density, band gap, Urbach energy, cutoff energy, cutoff wavelength, steepness parameter, electron-phonon interaction, refractive index, and optical dielectric constant were also studied and their values are found to be in the range of 1.21-1.394 g/cm3, 5.44-5.48 eV, 0.167-0.027 eV, 5.68 eV, 218 nm, 0.156-0.962, 4.273-0.693, 1.937-1.932, and 3.752-3.731 respectively. To evaluate the mechanical properties like compressive strength, flexural strength, and fracture toughness of the composites a Universal Testing Machine (UTM) was used and their values were 60.3 and 101 MPa, 78 and 40.3 MPa, 5.85 and 9.8 MPa-m1/2 respectively. Tribological tests of the composites were also carried out. In order to check the toxicity, MTT assay was also carried out for the PM0 and PM15 [(x)MgO + (100 - x) (C5O2H8)n] (x = 0 and 15) composites. This study provides a comprehensive insight into the structural, physical, optical, and biological features of the fabricated PMMA-MgO composites, highlighting the potential of the PM15 composite with its enhanced density, mechanical strength, and excellent biocompatibility for denture applications.


Subject(s)
Magnesium Oxide , Polymethyl Methacrylate , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Polymers , Dental Materials
3.
J Mech Behav Biomed Mater ; 145: 106032, 2023 09.
Article in English | MEDLINE | ID: mdl-37506567

ABSTRACT

Herein, present study mainly focuses on the synthesis and characterizations of boron nitride reinforced waste zirconia (wZrO2) with different concentrations. Composites were prepared via a scalable solid-state reaction method. Various physical parameters such as density, ionic concentration, polaron radius, and field strength were evaluated. XRD results reveal crystalline nature with a major phase of tetragonal zirconia and as boron nitride is reinforced, the tetragonal transforms into a monoclinic zirconia. Interconnected spherical grains and nanosheets were observed using FESEM. Mechanical characterizations revealed the highest compressive strength of 266 MPa. The latent fingerprints were visualized using a composite on different surfaces, implementing the powder dusting and solution techniques. MTT assay was performed and revealed good biocompatible nature. These results reveal that composite is suitable for fabrication of bioceramics with acceptable mechanical and biological performances. The composite can also be utilized for latent fingerprint detection in forensic science.


Subject(s)
Ceramics , Zirconium , Materials Testing , Ceramics/chemistry , Surface Properties , Zirconium/chemistry
4.
ACS Biomater Sci Eng ; 9(7): 3987-4019, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37303107

ABSTRACT

Technological advancement in the field of dentistry has to be proven in new avenues for professionals as well as laboratory programmers. An advanced type of technology is emerging based on digitalization, as a computerized three-dimensional (3-D) model, additive manufacturing also called 3-D printing, allows formation of block pieces by adding material layer-by-layer. The additive manufacturing (AM) approach has offered extreme progress in the broad choice of distinct zones, permitting the production of fragments of all possible varieties of substances such as metal, polymer, ceramic, and composites. The significant goal of current the article is to recapitulate the recent scenarios including the imminent perspective of AM techniques and challenges in dentistry. Moreover, this article reviews the recent developments of 3-D printing advancements along with the advantages and disadvantages. Herein, various AM technologies comprising vat photopolymerization (VPP), material jetting, material extrusion, selective laser sintering (SLS), selective laser melting (SLM), and direct metal laser sintering (DMLS) technologies based powder bed fusion technologies/direct energy deposition/sheet lamination centered on binder jetting technologies were discussed in detail. This paper attempts to provide a balanced view by emphasizing the economic, scientific, and technical challenges and presenting an overview of methods to discuss the similarities based on the authors' continuing research and development.


Subject(s)
Ceramics , Printing, Three-Dimensional , Polymers , Dentistry
5.
RSC Adv ; 12(49): 31585-31595, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36380956

ABSTRACT

The present work mainly focuses on the fabrication of a porous glass 40SiO2-35H3BO3-19V2O5-6P2O5 via a melt-quenching technique. The structural, morphological, and sensing behaviour of the glass sample was investigated successfully. The calculated density and molar volume of the fabricated glass are 2.4813 ± 0.124 g cm-3 and 35.7660 ± 1.708 cm3 mol-1. XRD, SEM and TEM analyses confirmed the amorphous nature of the glass. FTIR results revealed the O-H bond formations, which indicate that the presence of water molecules is probably due to the porous nature of the glass. Further, BET analysis confirmed the mesoporous nature of the glass sample with a mean pore diameter of 7 nm. The sensing response of the synthesized glass at 1000 ppm concentration of CO2 was found to be 3.05 with a response time 22.6 s and recovery time 25.8 s. Hence, this porous glass can be easily synthesized, is affordable, and was found to be useful for CO2 gas sensing applications.

6.
RSC Adv ; 11(50): 31284-31327, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496870

ABSTRACT

The exfoliation of two-dimensional (2D) hexagonal boron nitride nanosheets (h-BNNSs) from bulk hexagonal boron nitride (h-BN) materials has received intense interest owing to their fascinating physical, chemical, and biological properties. Numerous exfoliation techniques offer scalable approaches for harvesting single-layer or few-layer h-BNNSs. Their structure is very comparable to graphite, and they have numerous significant applications owing to their superb thermal, electrical, optical, and mechanical performance. Exfoliation from bulk stacked h-BN is the most cost-effective way to obtain large quantities of few layer h-BN. Herein, numerous methods have been discussed to achieve the exfoliation of h-BN, each with advantages and disadvantages. Herein, we describe the existing exfoliation methods used to fabricate single-layer materials. Besides exfoliation methods, various functionalization methods, such as covalent, non-covalent, and Lewis acid-base approaches, including physical and chemical methods, are extensively described for the preparation of several h-BNNS derivatives. Moreover, the unique and potent characteristics of functionalized h-BNNSs, like enhanced solubility in water, improved thermal conductivity, stability, and excellent biocompatibility, lead to certain extensive applications in the areas of biomedical science, electronics, novel polymeric composites, and UV photodetectors, and these are also highlighted.

8.
ACS Omega ; 4(4): 7448-7458, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459841

ABSTRACT

Three-dimensional nanocomposites exhibit unexpected mechanical and biological properties that are produced from two-dimensional graphene nanoplatelets and oxide materials. In the present study, various composites of microwave-synthesized nanohydroxyapatite (nHAp) and graphene nanoparticles (GNPs), (100 - x)HAp-xGNPs (x = 0, 0.1, 0.2, 0.3, and 0.5 wt %), were successfully synthesized using a scalable bottom-up approach, that is, a solid-state reaction method. The structural, morphological and mechanical properties were studied using various characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and universal testing machine (UTM). XRD studies revealed that the prepared composites have high-order crystallinity. Addition of GNPs into nHAp significantly improved the mechanical properties. Three-dimensional nanocomposite 99.5HAp-0.5GNPs exhibited exceptionally high mechanical properties, for example, a fracture toughness of ∼116 MJ/m3, Young's modulus of ∼98 GPa, and compressive strength of 96.04 MPa, which were noticed to be much greater than in the pure nHAp. The MTT assay and cell imaging behaviors were carried out on the gut tissues of Drosophila third instars larvae and on primary rat osteoblast cells for the sample 99.5HAp-0.5GNPs that have achieved the highest mechanical properties. The treatment with lower concentrations of 10 µg/mL on the gut tissues of Drosophila and 1 and 5 µg/mL of this composite sample showed favorable cell viability. Therefore, owing to the excellent porous nature, interconnected surface morphology, and mechanical and biological properties, the prepared composite sample 99.5HAp-0.5GNPs stood as a promising biomaterial for bone implant applications.

9.
RSC Adv ; 9(70): 40977-40996, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-35540076

ABSTRACT

In this study, six compositions in the system [x(h-BN)-(100 - x)ZrO2] (10 ≤ x ≤ 90) were synthesized by a bottom up approach, i.e., the solid-state reaction technique. XRD results showed the formation of a novel and main phase of zirconium oxynitrate ZrO(NO3)2 and SEM exhibited mixed morphology of layered and stacked h-BN nanosheets with ZrO2 grains. The composite sample 10 wt% h-BN + 90 wt% ZrO2 (10B90Z) showed outstanding mechanical properties for different parameters, i.e., density (3.12 g cm-3), Young's modulus (10.10 GPa), toughness (2.56 MJ m-3), and maximum mechanical strength (227.33 MPa). The current study further checked the in vivo toxicity of composite 10B90Z and composite 90B10Z using Drosophila melanogaster. The composite 10B90Z showed less cytotoxicity in this model, while the composite 90B10Z showed higher toxicity in terms of organ development as well as internal damage of the gut mostly at the lower concentrations of 1, 10, and 25 µg mL-1. Altogether, the current study proposes the composite 10B90Z as an ideal compound for applications in biomedical research. This composite 10B90Z displays remarkable mechanical and biological performances, due to which we recommend this composition for various biomedical applications.

10.
ACS Omega ; 3(6): 6013-6021, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30023937

ABSTRACT

Recent advances and demands in biomedical applications drive a large amount of research to synthesize easily scalable low-density, high-strength, and wear-resistant biomaterials. The chemical inertness with low density combined with high strength makes h-BN one of the promising materials for such application. In this work, three-dimensional hexagonal boron nitride (h-BN) interconnected with boron trioxide (B2O3) was prepared by easily scalable and energy efficient spark plasma sintering (SPS) process. The composite structure shows significant densification (1.6-1.9 g/cm3) and high surface area (0.97-14.5 m2/g) at an extremely low SPS temperature of 250 °C. A high compressive strength of 291 MPa with a reasonably good wear resistance was obtained for the composite structure. The formation of strong covalent bonds between h-BN and B2O3 was formulated and established by molecular dynamics simulation. The composite showed significant effect on cell viability/proliferation. It shows a high mineralized nodule formation over the control, which suggests its use as a possible osteogenic agent in bone formation.

11.
Dalton Trans ; 45(48): 19194-19215, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27892564

ABSTRACT

Zirconia (ZrO2) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO2, a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.


Subject(s)
Biocompatible Materials , Ceramics , Crowns , Dental Materials , Zirconium/chemistry , Cells, Cultured , Crystallography, X-Ray , Hot Temperature , Humans , Materials Testing , Surface Properties
12.
ACS Nano ; 9(12): 12088-95, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26580810

ABSTRACT

Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams. A theoretical model based on Density Functional Theory (DFT) is proposed for the formation of h-BN architectures. The material shows excellent, recyclable absorption capacity for oils and organic solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...