Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2317444121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527208

ABSTRACT

Dust loading in West and South Asia has been a major environmental issue due to its negative effects on air quality, food security, energy supply and public health, as well as on regional and global weather and climate. Yet a robust understanding of its recent changes and future projection remains unclear. On the basis of several high-quality remote sensing products, we detect a consistently decreasing trend of dust loading in West and South Asia over the last two decades. In contrast to previous studies emphasizing the role of local land use changes, here, we attribute the regional dust decline to the continuous intensification of Arctic amplification driven by anthropogenic global warming. Arctic amplification results in anomalous mid-latitude atmospheric circulation, particularly a deepened trough stretching from West Siberia to Northeast India, which inhibits both dust emissions and their downstream transports. Large ensemble climate model simulations further support the dominant role of greenhouse gases induced Arctic amplification in modulating dust loading over West and South Asia. Future projections under different emission scenarios imply potential adverse effects of carbon neutrality in leading to higher regional dust loading and thus highlight the importance of stronger anti-desertification counter-actions such as reforestation and irrigation management.

2.
Nat Commun ; 14(1): 4948, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587101

ABSTRACT

Reducing methane emissions from fossil fuel exploitation (oil, gas, coal) is an important target for climate policy, but current national emission inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC) are highly uncertain. Here we use 22 months (May 2018-Feb 2020) of satellite observations from the TROPOMI instrument to better quantify national emissions worldwide by inverse analysis at up to 50 km resolution. We find global emissions of 62.7 ± 11.5 (2σ) Tg a-1 for oil-gas and 32.7 ± 5.2 Tg a-1 for coal. Oil-gas emissions are 30% higher than the global total from UNFCCC reports, mainly due to under-reporting by the four largest emitters including the US, Russia, Venezuela, and Turkmenistan. Eight countries have methane emission intensities from the oil-gas sector exceeding 5% of their gas production (20% for Venezuela, Iraq, and Angola), and lowering these intensities to the global average level of 2.4% would reduce global oil-gas emissions by 11 Tg a-1 or 18%.

3.
Molecules ; 27(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268717

ABSTRACT

Perfluoropyridine (PFPy) is an organofluorine compound that has been employed for a variety of applications, from straightforward chemical synthesis to more advanced functions, such as fluorinated networks and polymers. This can be directly attributed to the highly reactive nature of PFPy, especially towards nucleophilic aromatic substitution (SNAr). The aim of this review is to highlight the discovery and synthesis of PFPy, discuss its reactive nature towards SNAr, and to summarize known reports of the utilization and thermal analysis of PFPy containing fluoropolymers and fluorinated network materials.

4.
Sci Adv ; 6(17): eaaz5120, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32494644

ABSTRACT

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world's most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a-1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data-based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.

5.
Proc Natl Acad Sci U S A ; 116(52): 26376-26381, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843920

ABSTRACT

Methane emissions due to accidents in the oil and natural gas sector are very challenging to monitor, and hence are seldom considered in emission inventories and reporting. One of the main reasons is the lack of measurements during such events. Here we report the detection of large methane emissions from a gas well blowout in Ohio during February to March 2018 in the total column methane measurements from the spaceborne Tropospheric Monitoring Instrument (TROPOMI). From these data, we derive a methane emission rate of 120 ± 32 metric tons per hour. This hourly emission rate is twice that of the widely reported Aliso Canyon event in California in 2015. Assuming the detected emission represents the average rate for the 20-d blowout period, we find the total methane emission from the well blowout is comparable to one-quarter of the entire state of Ohio's reported annual oil and natural gas methane emission, or, alternatively, a substantial fraction of the annual anthropogenic methane emissions from several European countries. Our work demonstrates the strength and effectiveness of routine satellite measurements in detecting and quantifying greenhouse gas emission from unpredictable events. In this specific case, the magnitude of a relatively unknown yet extremely large accidental leakage was revealed using measurements of TROPOMI in its routine global survey, providing quantitative assessment of associated methane emissions.

6.
Sci Rep ; 9(1): 16594, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719586

ABSTRACT

Northwestern India is known as the "breadbasket" of the country producing two-thirds of food grains, with wheat and rice as the principal crops grown under the crop rotation system. Agricultural data from India indicates a 25% increase in the post-monsoon rice crop production in Punjab during 2002-2016. NASA's A-train satellite sensors detect a consistent increase in the vegetation index (net 21%) and post-harvest agricultural fire activity (net ~60%) leading to nearly 43% increase in aerosol loading over the populous Indo-Gangetic Plain in northern India. The ground-level particulate matter (PM2.5) downwind over New Delhi shows a concurrent uptrend of net 60%. The effectiveness of a robust satellite-based relationship between vegetation index-a proxy for crop amounts, and post-harvest fires-a precursor of extreme air pollution events, has been further demonstrated in predicting the seasonal agricultural burning. An efficient crop residue management system is critically needed towards eliminating open field burning to mitigate episodic hazardous air quality over northern India.

7.
Environ Monit Assess ; 185(9): 7327-42, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23397540

ABSTRACT

In this study, we systematically document the link between dust episodes and local scale regional aerosol optical properties over Jaipur located in the vicinity of Thar Desert in the northwestern state of Rajasthan. The seasonal variation of AOT(500 nm) (aerosol optical thickness) shows high values (0.51 ± 0.18) during pre-monsoon (dust dominant) season while low values (0.36 ± 0.14) are exhibited during winter. The Ångström wavelength exponent has been found to exhibit low value (<0.25) indicating relative dominance of coarse-mode particles during pre-monsoon season. The AOT increased from 0.36 (Aprilmean) to 0.575 (May-June(mean)). Consequently, volume concentration range increases from April through May-June followed by a sharp decline in July during the first active phase of the monsoon. Significantly high dust storms were observed over Jaipur as indicated by high values of single scattering albedo (SSA(440 nm) = 0.89, SSA(675 nm) = 0.95, SSA870 nm = 0.97, SSA(1,020 nm) = 0.976) than the previously reported values over IGP region sites. The larger SSA values (more scattering aerosol), especially at longer wavelengths, is due to the abundant dust loading, and is attributed to the measurement site's proximity to the Thar Desert. The mean and standard deviation in SSA and asymmetry parameter during pre-monsoon season over Jaipur is 0.938 ± 0.023 and 0.712 ± 0.017 at 675 nm wavelength, respectively. Back-trajectory air mass simulations suggest Thar Desert in northwestern India as the primary source of high aerosols dust loading over Jaipur region as well as contribution by long-range transport from the Arabian Peninsula and Middle East gulf regions, during pre-monsoon season.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Air Pollution/statistics & numerical data , Climate , India , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...