Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Mol Cell Endocrinol ; 589: 112235, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38621656

ABSTRACT

Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor ß-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.


Subject(s)
Luteinizing Hormone , Receptors, LH , Signal Transduction , Receptors, LH/metabolism , Receptors, LH/genetics , Humans , Signal Transduction/drug effects , Luteinizing Hormone/metabolism , Animals , Cyclic AMP/metabolism , Protein Binding , Progesterone/metabolism , Receptors, FSH/metabolism , Receptors, FSH/genetics , Testosterone/metabolism , Testosterone/biosynthesis , HEK293 Cells , GTP-Binding Proteins/metabolism , Steroids/biosynthesis , Steroids/metabolism
2.
FEBS Lett ; 598(2): 220-232, 2024 01.
Article in English | MEDLINE | ID: mdl-37923554

ABSTRACT

Intracellular variable fragments of heavy-chain antibody from camelids (intra-VHH) have been successfully used as chaperones to solve the 3D structure of active G protein-coupled receptors bound to their transducers. However, their effect on signalling has been poorly explored, although they may provide a better understanding of the relationships between receptor conformation and activity. Here, we isolated and characterized iPRC1, the first intra-VHH recognizing a member of the large glycoprotein hormone receptor family, the follicle-stimulating hormone receptor (FSHR). This intra-VHH recognizes the FSHR third intracellular loop and decreases cAMP production in response to FSH, without altering Gαs recruitment. Hence, iPRC1 behaves as an allosteric modulator and provides a new tool to complete structure/activity studies performed thus far on this receptor.


Subject(s)
Follicle Stimulating Hormone , Receptors, FSH , Receptors, FSH/genetics , Receptors, FSH/chemistry , Receptors, FSH/metabolism , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , GTP-Binding Proteins/metabolism , Signal Transduction
3.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958944

ABSTRACT

Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches. We used next-generation sequencing to identify 34 clusters of specifically enriched sequences that were functionally assessed in a primary screen based on a cAMP response element (CRE)-dependent reporter gene assay. In this assay, 23 VHHs displayed negative or positive modulation of FSH-induced responses, suggesting a high success rate of the multiplexed strategy. We then focused on the largest cluster identified (i.e., PRC1) that displayed positive modulation of FSH action. We demonstrated that PRC1 specifically binds to the human FSHR and human FSHR/FSH complex while potentiating FSH-induced cAMP production and Gs recruitment. We conclude that the improved selection strategy reported here is effective for rapidly identifying functionally active VHHs and could be adapted to target other challenging membrane receptors. This study also led to the identification of PRC1, the first potential positive modulator VHH reported for the human FSHR.


Subject(s)
Bacteriophages , Receptors, FSH , Humans , Receptors, FSH/genetics , Receptors, FSH/metabolism , Follicle Stimulating Hormone/metabolism , Signal Transduction , High-Throughput Nucleotide Sequencing , Bacteriophages/genetics
4.
Front Endocrinol (Lausanne) ; 13: 1048601, 2022.
Article in English | MEDLINE | ID: mdl-36465650

ABSTRACT

Single-domain antibody fragments, also known as VHHs or nanobodies, have opened promising avenues in therapeutics and in exploration of intracellular processes. Because of their unique structural properties, they can reach cryptic regions in their cognate antigen. Intracellular VHHs/antibodies primarily directed against cytosolic proteins or transcription factors have been described. In contrast, few of them target membrane proteins and even less recognize G protein-coupled receptors. These receptors are major therapeutic targets, which reflects their involvement in a plethora of physiological responses. Hence, they elicit a tremendous interest in the scientific community and in the industry. Comprehension of their pharmacology has been obscured by their conformational complexity, that has precluded deciphering their structural properties until the early 2010's. To that respect, intracellular VHHs have been instrumental in stabilizing G protein-coupled receptors in active conformations in order to solve their structure, possibly bound to their primary transducers, G proteins or ß-arrestins. In contrast, the modulatory properties of VHHs recognizing the intracellular regions of G protein-coupled receptors on the induced signaling network have been poorly studied. In this review, we will present the advances that the intracellular VHHs have permitted in the field of GPCR signaling and trafficking. We will also discuss the methodological hurdles that linger the discovery of modulatory intracellular VHHs directed against GPCRs, as well as the opportunities they open in drug discovery.


Subject(s)
Antibodies , Drug Discovery , Monitoring, Physiologic , Membrane Proteins , Signal Transduction
6.
Nat Commun ; 12(1): 1064, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594056

ABSTRACT

Polycystic ovary syndrome (PCOS) is characterized by an oligo-anovulation, hyperandrogenism and polycystic ovarian morphology combined with major metabolic disturbances. However, despite the high prevalence and the human and economic consequences of this syndrome, its etiology remains unknown. In this study, we show that female Goto-Kakizaki (GK) rats, a type 2 diabetes mellitus model, encapsulate naturally all the reproductive and metabolic hallmarks of lean women with PCOS at puberty and in adulthood. The analysis of their gestation and of their fetuses demonstrates that this PCOS-like phenotype is developmentally programmed. GK rats also develop features of ovarian hyperstimulation syndrome. Lastly, a comparison between GK rats and a cohort of women with PCOS reveals a similar reproductive signature. Thus, this spontaneous rodent model of PCOS represents an original tool for the identification of the mechanisms involved in its pathogenesis and for the development of novel strategies for its treatment.


Subject(s)
Polycystic Ovary Syndrome/pathology , Adiposity , Animals , Animals, Newborn , Body Weight , Discriminant Analysis , Disease Models, Animal , Dyslipidemias/pathology , Endocrine System/pathology , Estrous Cycle , Female , Glucose Tolerance Test , Gonadotropins/pharmacology , Hormones/blood , Humans , Insulin Secretion , Least-Squares Analysis , Lipids/chemistry , Male , Maternal-Fetal Exchange , Multivariate Analysis , Ovary/pathology , Ovary/physiopathology , Phenotype , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/physiopathology , Pregnancy , Rats, Wistar , Reproduction , Sexual Maturation
SELECTION OF CITATIONS
SEARCH DETAIL
...