Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Nat Commun ; 15(1): 3872, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719797

ABSTRACT

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Microglia , Phagocytosis , Plaque, Amyloid , Animals , Microglia/metabolism , Microglia/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/microbiology , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/metabolism , Female , Mice , Male , Bacteroides fragilis/metabolism , Gastrointestinal Microbiome , Humans , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/pathology
2.
mSystems ; 8(5): e0044623, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37791767

ABSTRACT

IMPORTANCE: Mycobacterium species include several human pathogens and mycobacteriophages show potential for therapeutic use to control Mycobacterium infections. However, phage infection profiles vary greatly among Mycobacterium abscessus clinical isolates and phage therapies must be personalized for individual patients. Mycobacterium phage susceptibility is likely determined primarily by accessory parts of bacterial genomes, and we have identified the prophage and phage-related genomic regions across sequenced Mycobacterium strains. The prophages are numerous and diverse, especially in M. abscessus genomes, and provide a potentially rich reservoir of new viruses that can be propagated lytically and used to expand the repertoire of therapeutically useful phages.


Subject(s)
Bacteriophages , Mycobacteriophages , Mycobacterium , Humans , Prophages/genetics , Mycobacterium/genetics , Bacteriophages/genetics , Mycobacteriophages/genetics , Genome, Bacterial/genetics
3.
mSystems ; 8(5): e0044323, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37791778

ABSTRACT

IMPORTANCE: Bacteriophage genomes are pervasively mosaic, presenting challenges to describing phage relatedness. Here, we describe PhamClust, a bioinformatic approach for phage genome comparisons that uses a new metric of proteomic equivalence quotient for comparative genomics. PhamClust reliably assorts genomes into groups or clusters of related phages and can subdivide clusters into subclusters. PhamClust is computationally efficient and can readily process thousands of phage genomes. It is also a useful analytic tool for exploring the different types of inter-genome relatedness characteristic of phages in different clusters.


Subject(s)
Bacteriophages , Tool Use Behavior , Bacteriophages/genetics , Proteomics , Genome, Viral/genetics , Phylogeny , Cluster Analysis
4.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834628

ABSTRACT

Structured surfaces, which are the basis of the lotus blossom effect, have great potential to serve/operate as functionalised surfaces, i.e., surfaces with specific and/or adjustable properties. In the present study, the aim is to use micro-structured elastomeric surfaces to specifically influence the friction and deformation behaviours on the basis of the shape and arrangement of the structures. Thiol-acrylate-based photopolymers patterned via nanoimprint lithography were investigated by using an in situ tribological measurement set-up. A clear influence of the different structures on the surface's friction behaviour could be shown, and, furthermore, this could be brought into relation with the real area of contact. This finding provides an important contribution to further development steps, namely, to give the structures switchable properties in order to enable the control of friction properties in a targeted manner.

5.
Nat Immunol ; 24(11): 1839-1853, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749326

ABSTRACT

The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with ß-amyloid (Aß) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-ß (TGFß) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFß pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFß signaling provides a promising therapeutic intervention for AD.


Subject(s)
Alzheimer Disease , Female , Mice , Humans , Animals , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Microglia/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Disease Models, Animal
6.
Nat Neurosci ; 26(7): 1196-1207, 2023 07.
Article in English | MEDLINE | ID: mdl-37291336

ABSTRACT

Microglia play a critical role in brain homeostasis and disease progression. In neurodegenerative conditions, microglia acquire the neurodegenerative phenotype (MGnD), whose function is poorly understood. MicroRNA-155 (miR-155), enriched in immune cells, critically regulates MGnD. However, its role in Alzheimer's disease (AD) pathogenesis remains unclear. Here, we report that microglial deletion of miR-155 induces a pre-MGnD activation state via interferon-γ (IFN-γ) signaling, and blocking IFN-γ signaling attenuates MGnD induction and microglial phagocytosis. Single-cell RNA-sequencing analysis of microglia from an AD mouse model identifies Stat1 and Clec2d as pre-MGnD markers. This phenotypic transition enhances amyloid plaque compaction, reduces dystrophic neurites, attenuates plaque-associated synaptic degradation and improves cognition. Our study demonstrates a miR-155-mediated regulatory mechanism of MGnD and the beneficial role of IFN-γ-responsive pre-MGnD in restricting neurodegenerative pathology and preserving cognitive function in an AD mouse model, highlighting miR-155 and IFN-γ as potential therapeutic targets for AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Alzheimer Disease/metabolism , Interferon-gamma/metabolism , Microglia/metabolism , Signal Transduction/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Mice, Transgenic , Plaque, Amyloid/metabolism
7.
J Pathol ; 260(4): 455-464, 2023 08.
Article in English | MEDLINE | ID: mdl-37345735

ABSTRACT

Understanding the timing and spectrum of genetic alterations that contribute to the development of pancreatic cancer is essential for effective interventions and treatments. The aim of this study was to characterize somatic ATM alterations in noninvasive pancreatic precursor lesions and invasive pancreatic adenocarcinomas from patients with and without pathogenic germline ATM variants. DNA was isolated and sequenced from the invasive pancreatic ductal adenocarcinomas and precursor lesions of patients with a pathogenic germline ATM variant. Tumor and precursor lesions from these patients as well as colloid carcinoma from patients without a germline ATM variant were immunolabeled to assess ATM expression. Among patients with a pathogenic germline ATM variant, somatic ATM alterations, either mutations and/or loss of protein expression, were identified in 75.0% of invasive pancreatic adenocarcinomas but only 7.1% of pancreatic precursor lesions. Loss of ATM expression was also detected in 31.0% of colloid carcinomas from patients unselected for germline ATM status, significantly higher than in pancreatic precursor lesions [pancreatic intraepithelial neoplasms (p = 0.0013); intraductal papillary mucinous neoplasms, p = 0.0040] and pancreatic ductal adenocarcinoma (p = 0.0076) unselected for germline ATM status. These data are consistent with the second hit to ATM being a late event in pancreatic tumorigenesis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma, Mucinous , Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Adenocarcinoma, Mucinous/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Pancreatic Neoplasms
8.
Proc Natl Acad Sci U S A ; 120(11): e2220272120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36881624

ABSTRACT

T cells are present in early stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and play a major role in disease outcome and long-lasting immunity. Nasal administration of a fully human anti-CD3 monoclonal antibody (Foralumab) reduced lung inflammation as well as serum IL-6 and C-reactive protein in moderate cases of COVID-19. Using serum proteomics and RNA-sequencing, we investigated the immune changes in patients treated with nasal Foralumab. In a randomized trial, mild to moderate COVID-19 outpatients received nasal Foralumab (100 µg/d) given for 10 consecutive days and were compared to patients that did not receive Foralumab. We found that naïve-like T cells were increased in Foralumab-treated subjects and NGK7+ effector T cells were reduced. CCL5, IL32, CST7, GZMH, GZMB, GZMA, PRF1, and CCL4 gene expression were downregulated in T cells and CASP1 was downregulated in T cells, monocytes, and B cells in subjects treated with Foralumab. In addition to the downregulation of effector features, an increase in TGFB1 gene expression in cell types with known effector function was observed in Foralumab-treated subjects. We also found increased expression of GTP-binding gene GIMAP7 in subjects treated with Foralumab. Rho/ROCK1, a downstream pathway of GTPases signaling was downregulated in Foralumab-treated individuals. TGFB1, GIMAP7, and NKG7 transcriptomic changes observed in Foralumab-treated COVID-19 subjects were also observed in healthy volunteers, MS subjects, and mice treated with nasal anti-CD3. Our findings demonstrate that nasal Foralumab modulates the inflammatory response in COVID-19 and provides a novel avenue to treat the disease.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Humans , Mice , Administration, Intranasal , Antibodies, Monoclonal/therapeutic use , GTP-Binding Proteins , Membrane Proteins , rho-Associated Kinases , SARS-CoV-2 , T-Lymphocytes , Transforming Growth Factor beta1/genetics
9.
Brain Behav Immun ; 111: 61-75, 2023 07.
Article in English | MEDLINE | ID: mdl-37001827

ABSTRACT

Neuroligin-4 (NLGN4) loss-of-function mutations are associated with monogenic heritable autism spectrum disorder (ASD) and cause alterations in both synaptic and behavioral phenotypes. Microglia, the resident CNS macrophages, are implicated in ASD development and progression. Here we studied the impact of NLGN4 loss in a mouse model, focusing on microglia phenotype and function in both male and female mice. NLGN4 depletion caused lower microglia density, less ramified morphology, reduced response to injury and purinergic signaling specifically in the hippocampal CA3 region predominantly in male mice. Proteomic analysis revealed disrupted energy metabolism in male microglia and provided further evidence for sexual dimorphism in the ASD associated microglial phenotype. In addition, we observed impaired gamma oscillations in a sex-dependent manner. Lastly, estradiol application in male NLGN4-/- mice restored the altered microglial phenotype and function. Together, these results indicate that loss of NLGN4 affects not only neuronal network activity, but also changes the microglia state in a sex-dependent manner that could be targeted by estradiol treatment.


Subject(s)
Autism Spectrum Disorder , Male , Female , Animals , Mice , Autism Spectrum Disorder/genetics , Microglia , Mice, Knockout , Proteomics , Neurons/physiology
10.
PLoS One ; 18(2): e0281769, 2023.
Article in English | MEDLINE | ID: mdl-36795728

ABSTRACT

Mycobacterium abscessus infections are relatively common in patients with cystic fibrosis and are clinically challenging, with frequent intrinsic resistance to antibiotics. Therapeutic treatment with bacteriophages offers some promise but faces many challenges including substantial variation in phage susceptibilities among clinical isolates, and the need to personalize therapies for individual patients. Many strains are not susceptible to any phages or are not efficiently killed by lytic phages, including all smooth colony morphotype strains tested to-date. Here, we analyze a set of new M. abscessus isolates for the genomic relationships, prophage content, spontaneous phage release, and phage susceptibilities. We find that prophages are common in these M. abscessus genomes, but some have unusual arrangements, including tandemly integrated prophages, internal duplications, and they participate in active exchange of polymorphic toxin-immunity cassettes secreted by ESX systems. Relatively few strains are efficiently infected by any mycobacteriophages, and the infection patterns do not reflect the overall phylogenetic relationships of the strains. Characterization of these strains and their phage susceptibility profiles will help to advance the broader application of phage therapies for NTM infections.


Subject(s)
Bacteriophages , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Bacteriophages/genetics , Prophages/genetics , Mycobacterium abscessus/genetics , Phylogeny , Genome , Mycobacterium Infections, Nontuberculous/microbiology
11.
Front Immunol ; 13: 956907, 2022.
Article in English | MEDLINE | ID: mdl-36505477

ABSTRACT

Background: Parenteral anti-CD3 Mab (OKT3) has been used to treat transplant rejection and parental administration of a humanized anti-CD3 Mab (Teplizumab) showed positive effects in diabetes. Nasal administration of anti-CD3 Mab has not been carried out in humans. Nasal anti-CD3 Mab suppresses autoimmune diseases and central nervous system (CNS) inflammation in animal models. We investigated the safety and immune effects of a fully humanized, previously uncharacterized nasal anti-CD3 Mab (Foralumab) in humans and its in vitro stimulatory properties. Methods: In vitro, Foralumab were compared to UCHT1 anti-human CD3 mAb. For human administration, 27 healthy volunteers (9 per group) received nasal Foralumab or placebo at a dose of 10ug, 50ug, or 250ug daily for 5 days. Safety was assessed and immune parameters measured on day 1 (pre-treatment), 7, 14, and 30 by FACS and by scRNAseq. Results: In vitro, Foralumab preferentially induced CD8+ T cell stimulation, reduced CD4+ T cell proliferation and lowered expression of IFNg, IL-17 and TNFa. Foralumab induced LAP, TIGIT, and KLRG1 immune checkpoint molecules on CD8+ and CD4+ T cells in a mechanism independent of CD8 T cells. In vivo, nasal Foralumab did not modulate CD3 from the T cell surface at any dose. Immune effects were primarily observed at the 50ug dose and consisted of reduction of CD8+ effector memory cells, an increase in naive CD8+ and CD4+ T cells, and reduced CD8+ T cell granzyme B and perforin expression. Differentially expressed genes observed by scRNAseq in CD8+ and CD4+ populations promoted survival and were anti-inflammatory. In the CD8+ TEMRA population there was induction of TIGIT, TGFB1 and KIR3DL2, indicative of a regulatory phenotype. In the memory CD4+ population, there was induction of CTLA4, KLRG1, and TGFB whereas there was an induction of TGF-B1 in naïve CD4+ T cells. In monocytes, there was induction of genes (HLA-DP, HLA-DQ) that promote a less inflammatory immune response. No side effects were observed, and no subjects developed human anti-mouse antibodies. Conclusion: These findings demonstrate that nasal Foralumab is safe and immunologically active in humans and presents a new avenue for the treatment of autoimmune and CNS diseases.


Subject(s)
Antibodies, Monoclonal , CD8-Positive T-Lymphocytes , Humans , Administration, Intranasal , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Muromonab-CD3 , Research Subjects
12.
G3 (Bethesda) ; 12(11)2022 11 04.
Article in English | MEDLINE | ID: mdl-36161315

ABSTRACT

The diversity and mosaic architecture of phage genomes present challenges for whole-genome phylogenies and comparative genomics. There are no universally conserved core genes, ∼70% of phage genes are of unknown function, and phage genomes are replete with small (<500 bp) open reading frames. Assembling sequence-related genes into "phamilies" ("phams") based on amino acid sequence similarity simplifies comparative phage genomics and facilitates representations of phage genome mosaicism. With the rapid and substantial increase in the numbers of sequenced phage genomes, computationally efficient pham assembly is needed, together with strategies for including newly sequenced phage genomes. Here, we describe the Python package PhaMMseqs, which uses MMseqs2 for pham assembly, and we evaluate the key parameters for optimal pham assembly of sequence- and functionally related proteins. PhaMMseqs runs efficiently with only modest hardware requirements and integrates with the pdm_utils package for simple genome entry and export of datasets for evolutionary analyses and phage genome map construction.


Subject(s)
Bacteriophages , Genome, Viral , Bacteriophages/genetics , Phylogeny , Genomics , Open Reading Frames/genetics
13.
Immunity ; 55(9): 1627-1644.e7, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35977543

ABSTRACT

The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.


Subject(s)
Apolipoprotein E4 , Glaucoma , Animals , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/therapeutic use , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Galectin 3/genetics , Galectin 3/metabolism , Galectin 3/therapeutic use , Glaucoma/drug therapy , Glaucoma/genetics , Glaucoma/metabolism , Humans , Mice , Microglia/metabolism
14.
Nucleic Acids Res ; 50(13): e75, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35451479

ABSTRACT

Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.


Subject(s)
Genomics/methods , Mycobacteriophages/isolation & purification , Mycobacterium , Prophages/isolation & purification , Bacteriophages/genetics , Bacteriophages/isolation & purification , Mycobacteriophages/genetics , Mycobacterium/genetics , Mycobacterium/virology , Prophages/genetics
15.
Microbiome ; 10(1): 47, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35272713

ABSTRACT

BACKGROUND: The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. RESULTS: In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. CONCLUSIONS: Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. Video abstract.


Subject(s)
Amyotrophic Lateral Sclerosis , Microbiota , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Microglia/pathology , Neurodegenerative Diseases/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/pharmacology , Superoxide Dismutase-1/therapeutic use
16.
Glia ; 70(4): 675-696, 2022 04.
Article in English | MEDLINE | ID: mdl-35050555

ABSTRACT

Neuropathic pain is a prevalent and debilitating chronic disease that is characterized by activation in glial cells in various pain-related regions within the central nervous system. Recent studies have suggested a sexually dimorphic role of microglia in the maintenance of neuropathic pain in rodents. Here, we utilized RNA sequencing analysis and in vitro primary cultures of microglia to identify whether there is a common neuropathic microglial signature and characterize the sex differences in microglia in pain-related regions in nerve injury and chemotherapy-induced peripheral neuropathy mouse models. While mechanical allodynia and behavioral changes were observed in all models, transcriptomic analysis of microglia revealed no common transcriptional changes in spinal and supraspinal regions and in the different neuropathic models. However, there was a substantial change in microglial gene expression within the ipsilateral lumbar spinal cord 7 days after chronic constriction injury (CCI) of the sciatic nerve. Both sexes upregulated genes associated with inflammation, phagosome, and lysosome activation, though males revealed a prominent global transcriptional shift not observed in female mice. Transcriptomic comparison between male spinal microglia after CCI and data from other nerve injury models and neurodegenerative microglia demonstrated a unique CCI-induced signature reflecting acute activation of microglia. Further, in vitro studies revealed that only male microglia from nerve-injured mice developed a reactive phenotype with increased phagocytotic activity. This study demonstrates a lack of a common neuropathic microglial signature and indicates distinct sex differences in spinal microglia, suggesting they contribute to the sex-specific pain processing following nerve injury.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Animals , Female , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Mice , Microglia/metabolism , Neuralgia/metabolism , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Sciatic Nerve/metabolism , Spinal Cord/metabolism , Transcriptome
17.
Nat Commun ; 12(1): 4907, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389726

ABSTRACT

The intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.


Subject(s)
B7-H1 Antigen/immunology , Dendritic Cells/immunology , Homeostasis/immunology , Intestinal Mucosa/immunology , Receptors, Chemokine/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Homeostasis/genetics , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
18.
Pancreatology ; 21(5): 938-941, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33839031

ABSTRACT

BACKGROUND: Pancreatic cancer is a lethal disease with a poor 5-year survival rate. Pathogenic germline variants in the coding regions of ATM, BRCA1, and BRCA2 are found in up to 4.8% of pancreatic cancer patients. Germline promoter methylation and gene silencing arising from a germline variant or through other mechanisms have been described as a cause of tumor suppressor gene inactivation. METHODS: We measured the level of promoter methylation of the ATM, BRCA1, and BRCA2 genes in peripheral blood lymphocytes from 655 patients with pancreatic cancer using real-time PCR. RESULTS: No evidence of germline promoter methylation of any of these genes was found. Promoter methylation levels were minimal with no patient having promoter methylation greater than 3.4%, 3.3%, and 7.6% for ATM, BRCA1 and BRCA2, respectively, well below levels found in patients who have inherited promoter methylation (∼50%). CONCLUSIONS: We found no evidence of germline promoter methylation for the pancreatic susceptibility genes ATM, BRCA1 and BRCA2 in patients with pancreatic cancer. This study reveals that constitutive germline methylation of promoter CpG islands is rare in pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Ataxia Telangiectasia Mutated Proteins , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms , DNA Methylation , Female , Genes, BRCA2 , Genetic Predisposition to Disease , Humans , Pancreatic Neoplasms/genetics , Promoter Regions, Genetic , Pancreatic Neoplasms
19.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33707330

ABSTRACT

Mycobacteriophage phiT45-1 is a newly isolated bacteriophage spontaneously released from Mycobacterium abscessus strain Taiwan-45 that lytically infects M. abscessus strain BWH-C; phiT45-1 also infects M. abscessus ATCC 19977 but not Mycobacterium smegmatis Phage phiT45-1 has a 43,407-bp genome and carries a polymorphic toxin-immunity cassette associated with type VII secretion systems.

20.
mBio ; 12(2)2021 03 30.
Article in English | MEDLINE | ID: mdl-33785625

ABSTRACT

Mycobacterium abscessus is an opportunistic pathogen whose treatment is confounded by widespread multidrug resistance. The therapeutic use of bacteriophages against Mycobacterium abscessus infections offers a potential alternative approach, although the spectrum of phage susceptibilities among M. abscessus isolates is not known. We determined the phage infection profiles of 82 M. abscessus recent clinical isolates and find that colony morphotype-rough or smooth-is a key indicator of phage susceptibility. None of the smooth strains are efficiently killed by any phages, whereas 80% of rough strains are infected and efficiently killed by at least one phage. The repertoire of phages available for potential therapy of rough morphotype infections includes those with relatively broad host ranges, host range mutants of Mycobacterium smegmatis phages, and lytically propagated viruses derived from integrated prophages. The rough colony morphotype results from indels in the glycopeptidolipid synthesis genes mps1 and mps2, negating reversion to smooth as a common route to phage resistance. Resistance is thus rare, and although mutations in polyketide synthesis, uvrD2, and rpoZ can confer resistance, these likely also impair survival in vivo The expanded therapeutic repertoire and the resistance profiles show that small cocktails or single phages could be suitable for controlling infections with rough strains.IMPORTANCEMycobacterium abscessus infections in cystic fibrosis patients are challenging to treat due to widespread antibiotic resistance. The therapeutic use of lytic bacteriophages presents a new potential strategy, but the great variation among clinical M. abscessus isolates demands determination of phage susceptibility prior to therapy. Elucidation of the variation in phage infection and factors determining it, expansion of the suite of therapeutic phage candidates, and a greater understanding of phage resistance mechanisms substantially advances the potential for broad implementation of new therapeutic options for M. abscessus infections.


Subject(s)
Mycobacteriophages/physiology , Mycobacterium Infections, Nontuberculous/therapy , Mycobacterium abscessus/virology , Phage Therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cystic Fibrosis/microbiology , Host Specificity , Host-Pathogen Interactions , Humans , Mutation , Mycobacteriophages/genetics , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium abscessus/genetics , Mycobacterium abscessus/immunology , Mycobacterium abscessus/physiology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...