Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pract Lab Med ; 39: e00390, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38715659

ABSTRACT

Introduction: This study evaluated the clinical and analytical performances of the Access HBsAg and the Access HBsAg Confirmatory assays on the DxI 9000 Access Immunoassay Analyzer (Beckman Coulter, Inc.). Materials and methods: Diagnostic specificity and sensitivity of the Access HBsAg and Access HBsAg Confirmatory assays were evaluated by comparing the Access assays to the final HBsAg sample status determined using the Architect, PRISM, or Elecsys HBsAg assays, along with Architect or PRISM HBsAg Confirmatory assays. Imprecision, sensitivity on seroconversion panels, analytical sensitivity on WHO, and recognition of HBV variants were also evaluated. Results: A total of 7534 samples were included in the analysis (6047 blood donors, 1032 hospitalized patients, 455 positive patients' samples). Access HBsAg assay sensitivity and specificity were at 100.00% (99.19-100.0) and 99.92% (99.82-99.97), respectively. Sensitivity of Access HBsAg Confirmatory assay was 100.00% (99.21-100.0) on the 464 HBsAg positive samples. The use of a high positive algorithm for the Access HBsAg assay, wherein samples with S/CO ≥ 100.00 were considered positive without requiring repeat or confirmatory testing, was successfully evaluated with all 450 specimens with S/CO greater than 100.00 (sensitivity 100.00%; 99.19-100.0). Access HBsAg assay demonstrated good analytical performance, equivalent recognition of seroconversion panels compared to Architect assay, and an analytical sensitivity between 0.022 and 0.025 IU/mL. All HBV genotypes, subtypes and mutants were well detected without analytical sensitivity loss. Conclusion: Access HBsAg and Access HBsAg Confirmatory assays demonstrated robust performances. They provide low samples volume requirements and a simplified process, no systematic retesting for high positive samples.

2.
Prenat Diagn ; 39(11): 1011-1015, 2019 10.
Article in English | MEDLINE | ID: mdl-31429096

ABSTRACT

OBJECTIVE: To evaluate clinical performance of a new automated cell-free (cf)DNA assay in maternal plasma screening for trisomies 21, 18, and 13, and to determine fetal sex. METHOD: Maternal plasma samples from 1200 singleton pregnancies were analyzed with a new non-sequencing cfDNA method, which is based on imaging and counting specific chromosome targets. Reference outcomes were determined by either cytogenetic testing, of amniotic fluid or chorionic villi, or clinical examination of neonates. RESULTS: The samples examined included 158 fetal aneuploidies. Sensitivity was 100% (112/112) for trisomy 21, 89% (32/36) for trisomy 18, and 100% (10/10) for trisomy 13. The respective specificities were 100%, 99.5%, and 99.9%. There were five first pass failures (0.4%), all in unaffected pregnancies. Sex classification was performed on 979 of the samples and 99.6% (975/979) provided a concordant result. CONCLUSION: The new automated cfDNA assay has high sensitivity and specificity for trisomies 21, 18, and 13 and accurate classification of fetal sex, while maintaining a low failure rate. The study demonstrated that cfDNA testing can be simplified and automated to reduce cost and thereby enabling wider population-based screening.


Subject(s)
Noninvasive Prenatal Testing/methods , Trisomy/diagnosis , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 18 , Chromosomes, Human, Pair 21 , Female , Humans , Pregnancy
3.
Sci Rep ; 7(1): 11344, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28900114

ABSTRACT

Artificial bio-based scaffolds offer broad applications in bioinspired chemistry, nanomedicine, and material science. One current challenge is to understand how the programmed self-assembly of biomolecules at the nanometre level can dictate the emergence of new functional properties at the mesoscopic scale. Here we report a general approach to design genetically encoded protein-based scaffolds with modular biochemical and magnetic functions. By combining chemically induced dimerization strategies and biomineralisation, we engineered ferritin nanocages to nucleate and manipulate microtubule structures upon magnetic actuation. Triggering the self-assembly of engineered ferritins into micrometric scaffolds mimics the function of centrosomes, the microtubule organizing centres of cells, and provides unique magnetic and self-organizing properties. We anticipate that our approach could be transposed to control various biological processes and extend to broader applications in biotechnology or material chemistry.


Subject(s)
Chemical Phenomena , Magnetics , Microtubules/chemistry , Microtubules/metabolism , Animals , Biomineralization , Ferritins/chemistry , Ferritins/metabolism , Ferritins/ultrastructure , Humans , Microtubules/ultrastructure , Nanostructures/chemistry , Protein Binding , Recombinant Proteins
4.
PLoS One ; 12(5): e0172101, 2017.
Article in English | MEDLINE | ID: mdl-28472040

ABSTRACT

The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.


Subject(s)
Global Health , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/immunology , High-Throughput Nucleotide Sequencing , Mutation , Amino Acid Substitution , Genotype , Hepatitis B Surface Antigens/chemistry , Humans , Hydrophobic and Hydrophilic Interactions
5.
Methods Cell Biol ; 125: 13-27, 2015.
Article in English | MEDLINE | ID: mdl-25640421

ABSTRACT

Optimal single particle tracking experiments in live cells requires small and photostable probes, which do not modify the behavior of the molecule of interest. Current fluorescence-based microscopy of single molecules and nanoparticles is often limited by bleaching and blinking or by the probe size. As an alternative, we present in this chapter the synthesis of a small and highly specific gold nanoprobe whose detection is based on its absorption properties. We first present a protocol to synthesize 5-nm-diameter gold nanoparticles and functionalize them with a nanobody, a single-domain antibody from camelid, targeting the widespread green fluorescent protein (GFP)-tagged proteins with a high affinity. Then we describe how to detect and track these individual gold nanoparticles in live cell using photothermal imaging microscopy. The combination of a probe with small size, perfect photostability, high specificity, and versatility through the vast existing library of GFP-proteins, with a highly sensitive detection technique enables long-term tracking of proteins with minimal hindrance in confined and crowded environments such as intracellular space.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Imaging/methods , Animals , COS Cells , Cell Survival , Chlorocebus aethiops , Endocytosis , Green Fluorescent Proteins/metabolism
6.
EMBO J ; 33(23): 2745-64, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25293574

ABSTRACT

Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Dendritic Spines/physiology , Models, Biological , Post-Synaptic Density/metabolism , Synaptic Transmission/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cells, Cultured , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Formins , Nerve Tissue Proteins/metabolism , Polymerase Chain Reaction , Proteins , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
7.
ACS Nano ; 7(11): 9647-54, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24144301

ABSTRACT

Living systems offer attractive strategies to generate nanoscale structures because of their innate functional properties such as the dynamic assembly of ordered nanometer fibers, the generation of mechanical forces, or the directional transport mediated by molecular motors. The design of hybrid systems, capable of interfacing artificial building blocks with biomolecules, may be a key step toward the rational design of nanoscale devices and materials. Here, we have designed a bottom-up approach to organize cytoskeletal elements in space using the self-assembly properties of magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation. We show that magnetic nanoparticles conjugated to signaling proteins involved in microtubule nucleation can control the positioning of microtubule assembly. Under a magnetic field, a self-organized pattern of biofunctionalized nanoparticles is formed and leads to the nucleation of a periodical network of microtubules in Xenopus laevis egg extract. Our method shows how bioactive nanoparticles can generate a biochemically active pattern upon magnetic actuation, which triggers the spatial organization of nonequilibrium biological structures.


Subject(s)
Magnetics , Microtubules/chemistry , Proteins/chemistry , Animals , Cytoskeleton/metabolism , Microfluidic Analytical Techniques , Microscopy, Fluorescence , Microtubules/metabolism , Nanoparticles/chemistry , Nanotechnology/methods , Polyethylene Glycols/chemistry , Polymers/chemistry , Recombinant Proteins/chemistry , Signal Transduction , Stress, Mechanical , Xenopus laevis/metabolism , ran GTP-Binding Protein/metabolism
8.
Nano Lett ; 13(4): 1489-94, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23458263

ABSTRACT

Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Because of these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5 nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used green fluorescent proteins (GFPs) with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with the vast existing library of GFP-tagged proteins.


Subject(s)
Antibodies/chemistry , Diagnostic Imaging , Gold/chemistry , Nanoparticles/chemistry , Green Fluorescent Proteins , Humans , Nanotechnology
9.
J Cell Sci ; 124(Pt 20): 3414-27, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-22010197

ABSTRACT

The Scar/Wave complex (SWC) generates lamellipodia through Arp2/3-dependent polymerisation of branched actin networks. In order to identify new SWC regulators, we conducted a screen in Drosophila cells combining proteomics with functional genomics. This screen identified Clathrin heavy chain (CHC) as a protein that binds to the SWC and whose depletion affects lamellipodium formation. This role of CHC in lamellipodium formation can be uncoupled from its role in membrane trafficking by several experimental approaches. Furthermore, CHC is detected in lamellipodia in the absence of the adaptor and accessory proteins of endocytosis. We found that CHC overexpression decreased membrane recruitment of the SWC, resulting in reduced velocity of protrusions and reduced cell migration. By contrast, when CHC was targeted to the membrane by fusion to a myristoylation sequence, we observed an increase in membrane recruitment of the SWC, protrusion velocity and cell migration. Together these data suggest that, in addition to its classical role in membrane trafficking, CHC brings the SWC to the plasma membrane, thereby controlling lamellipodium formation.


Subject(s)
Clathrin/metabolism , Drosophila Proteins/metabolism , Microfilament Proteins/metabolism , Pseudopodia/metabolism , Animals , Cell Movement/genetics , Cell Surface Extensions/metabolism , Cell Surface Extensions/pathology , Clathrin/genetics , Drosophila , Drosophila Proteins/genetics , HeLa Cells , Humans , Microfilament Proteins/genetics , Protein Binding/genetics , Protein Transport/genetics , Proteomics , Pseudopodia/pathology , Sequence Deletion/genetics , Transgenes/genetics , Wiskott-Aldrich Syndrome Protein Family/genetics , Wiskott-Aldrich Syndrome Protein Family/metabolism
10.
Dev Cell ; 17(5): 712-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19922875

ABSTRACT

The Arp2/3 complex generates branched actin networks when activated by Nucleation Promoting Factors (NPFs). Recently, the WASH family of NPFs has been identified, but its cellular role is unclear. Here, we show that WASH generates an actin network on a restricted domain of sorting and recycling endosomes. We found that WASH belongs to a multiprotein complex containing seven subunits, including the heterodimer of capping protein (CP). In vitro, the purified WASH complex activates Arp2/3-mediated actin nucleation and binds directly to liposomes. WASH also interacts with dynamin. WASH depletion gives rise to long membrane tubules pulled out from endosomes along microtubules, as does dynamin inhibition. Accordingly, WASH is required for efficient transferrin recycling. Together, these data suggest that the WASH molecular machine, integrating CP with a NPF, controls the fission of endosomes through an interplay between the forces generated by microtubule motors and actin polymerization.


Subject(s)
Actin-Related Protein 2/metabolism , Actin-Related Protein 3/metabolism , Endosomes/metabolism , Microtubule-Associated Proteins/metabolism , Protein Multimerization , Actin Capping Proteins/metabolism , Actins/metabolism , Animals , Cell Line , Humans , Mice , Microtubule-Associated Proteins/genetics , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...