Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38386982

ABSTRACT

The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.


Subject(s)
Podospora , Podospora/genetics , Phylogeny , Reproduction , Fungal Proteins/genetics , Fungal Proteins/metabolism
2.
J Fungi (Basel) ; 10(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276025

ABSTRACT

The ascomycete Podospora anserina is a heterothallic filamentous fungus found mainly on herbivore dung. It is commonly used in laboratories as a model system, and its complete life cycle lasting eight days is well mastered in vitro. The main objective of our team is to understand better the global process of fruiting body development, named perithecia, induced normally in this species by fertilization. Three allelic mutants, named pfd3, pfd9, and pfd23 (for "promoting fruiting body development") obtained by UV mutagenesis, were selected in view of their abilities to promote barren perithecium development without fertilization. By complete genome sequencing of pfd3 and pfd9, and mutant complementation, we identified point mutations in the mcm1 gene as responsible for spontaneous perithecium development. MCM1 proteins are MADS box transcription factors that control diverse developmental processes in plants, metazoans, and fungi. We also identified using the same methods a mutation in the VelC gene as responsible for spontaneous perithecium development in the vacua mutant. The VelC protein belongs to the velvet family of regulators involved in the control of development and secondary metabolite production. A key role of MCM1 and VelC in coordinating the development of P. anserina perithecia with gamete formation and fertilization is highlighted.

3.
Mol Phylogenet Evol ; 189: 107938, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820761

ABSTRACT

The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.


Subject(s)
Genomics , Sordariales , Humans , Phylogeny , Genomics/methods , Genome , Sordariales/genetics , Base Sequence , Evolution, Molecular
4.
PLoS Genet ; 19(2): e1010347, 2023 02.
Article in English | MEDLINE | ID: mdl-36763677

ABSTRACT

Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.


Subject(s)
Ascomycota , Sordariales , Genes, Mating Type, Fungal/genetics , Reproduction/genetics , Ascomycota/genetics , Sordariales/genetics , Recombination, Genetic/genetics , Spores
5.
Fungal Genet Biol ; 161: 103711, 2022 07.
Article in English | MEDLINE | ID: mdl-35597448

ABSTRACT

The Crippled Growth (CG) cell degeneration of the model ascomycete Podospora anserina (strain S) is controlled by a prion-like element and has been linked to the self-activation of the PaMpk1 MAP kinase cascade. Here, we report on the identification of the "86-11" locus containing twelve genes, ten of which are involved either in setting up the self-activation loop of CG or in inhibiting this loop, as demonstrated by targeted gene deletion. Interestingly, deletion of the whole locus results only in the elimination of CG and in no detectable additional physiological defect. Sequence comparison shows that these ten genes belong to four different families, each one endowed with a specific activity: two encode factors activating the loop, a third one encodes a factor crucial for inhibition of the loop and the fourth one participates in inhibiting the loop in a pathway parallel to the one controlled by the previously described PDC1 gene. Intriguingly, a very distant homologue of this "86-11" locus is present at the syntenic position in Podospora comata (strain T) that do not present Crippled Growth. Introgression of the P. comata strain T locus in P. anserina strain S and the P. anserina strain S in P. comata strain T showed that both drive CG in the P. anserina strain S genetic background, but not in the genetic background of strain P. comata T, indicating that genetic determinants outside the twelve-gene locus are responsible for lack of CG in P. comata strain T. Our data question the role of this twelve-gene locus in the physiology of P. anserina.


Subject(s)
Multigene Family , Podospora , Gene Deletion , MAP Kinase Signaling System , Podospora/genetics , Podospora/growth & development
6.
G3 (Bethesda) ; 11(8)2021 08 07.
Article in English | MEDLINE | ID: mdl-33974074

ABSTRACT

Melanins are pigments used by fungi to withstand various stresses and to strengthen vegetative and reproductive structures. In Sordariales fungi, their biosynthesis starts with a condensation step catalyzed by an evolutionary-conserved polyketide synthase. Here we show that complete inactivation of this enzyme in the model ascomycete Podospora anserina through targeted deletion of the PaPks1 gene results in reduced female fertility, in contrast to a previously analyzed nonsense mutation in the same gene that retains full fertility. We also show the utility of PaPks1 mutants for detecting rare genetic events in P. anserina, such as parasexuality and possible fertilization and/or apomixis of nuclei devoid of mating-type gene.


Subject(s)
Fungal Proteins/physiology , Melanins/physiology , Podospora , Fertility/genetics , Fungal Proteins/genetics , Melanins/genetics , Podospora/genetics , Podospora/physiology
7.
Am J Med Genet A ; 185(5): 1494-1497, 2021 05.
Article in English | MEDLINE | ID: mdl-33522073

ABSTRACT

First trimester ultrasound screening is an essential fetal examination performed generally at 11-13 weeks of gestation (WG). However, it does not allow for an accurate description of all fetal organs, partly due to their development in progress. Meanwhile, increased nuchal translucency (INT) is a widely used marker known to be associated with chromosomal deleterious rearrangements. We report on a 14 WG fetus with an association of INT and univentricular congenital heart malformation (CHM) leading to chorionic villous sampling (CVS). Cytogenetic investigations performed using array-Comparative Genomic Hybridization (CGH) and fluorescence in situ hybridization (FISH) demonstrated a 1.17 Mb deletion in 16q24.1 encompassing FOXF1 arisen de novo on maternal inherited chromosome. Fetopathological study confirmed CHM with hypoplastic left heart syndrome (HLHS) associating aortic atresia, mitral stenosis, and left ventricular hypoplasia and revealed in addition specific lung lesions corresponding to alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). This is so far the first case of first trimester prenatal diagnosis of ACDMPV due to the deletion of FOXF1 gene. An interpretation of the complex genomic data generated by ultrasound markers is facilitated considerably by the genotype-phenotype correlations on fetopathological examination.


Subject(s)
Chromosome Deletion , Forkhead Transcription Factors/genetics , Genetic Predisposition to Disease , Persistent Fetal Circulation Syndrome/diagnosis , Pulmonary Alveoli/abnormalities , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization , Early Diagnosis , Female , Genetic Association Studies , Humans , In Situ Hybridization, Fluorescence , Infant, Newborn , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Pregnancy , Prenatal Diagnosis , Pulmonary Alveoli/pathology , Pulmonary Veins/abnormalities , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/growth & development , Pulmonary Veins/pathology , Sequence Deletion
8.
Mol Biol Evol ; 38(6): 2475-2492, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33555341

ABSTRACT

Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.


Subject(s)
Biological Evolution , Chromosomes, Fungal , Genes, Mating Type, Fungal , Podospora/genetics , Recombination, Genetic , Gene Conversion , Heterozygote , Self-Fertilization
9.
Environ Microbiol ; 23(3): 1594-1607, 2021 03.
Article in English | MEDLINE | ID: mdl-33393164

ABSTRACT

Secreted proteins are key players in fungal physiology and cell protection against external stressing agents and antifungals. Oak stress-induced protein 1 (OSIP1) is a fungal-specific protein with unknown function. By using Podospora anserina and Phanerochaete chrysosporium as models, we combined both in vivo functional approaches and biophysical characterization of OSIP1 recombinant protein. The P. anserina OSIP1Δ mutant showed an increased sensitivity to the antifungal caspofungin compared to the wild type. This correlated with the production of a weakened extracellular exopolysaccharide/protein matrix (ECM). Since the recombinant OSIP1 from P. chrysosporium self-assembled as fibers and was capable of gelation, it is likely that OSIP1 is linked to ECM formation that acts as a physical barrier preventing drug toxicity. Moreover, compared to the wild type, the OSIP1Δ mutant was more sensitive to oak extractives including chaotropic phenols and benzenes. It exhibited a strongly modified secretome pattern and an increased production of proteins associated to the cell-wall integrity signalling pathway, when grown on oak sawdust. This demonstrates that OSIP1 has also an important role in fungal resistance to extractive-induced stress.


Subject(s)
Phanerochaete , Podospora , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Phanerochaete/metabolism , Signal Transduction
10.
J Fungi (Basel) ; 6(4)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187140

ABSTRACT

The filamentous fungus Podospora anserina is a good model to study the breakdown of lignocellulose, owing to its ease of culture and genetical analysis. Here, we show that the fungus is able to use a wide range of lignocellulosic materials as food sources. Using color assays, spectroscopy and pyrolysis-gas chromatography mass spectrometry, we confirm that this ascomycete is able to degrade lignin, primarily by hydrolyzing ß-O-4 linkages, which facilitates its nutrient uptake. We show that the limited weight loss that is promoted when attacking Miscanthus giganteus is due to a developmental blockage rather than an inefficiency of its enzymes. Finally, we show that lignin, and, more generally, phenolics, including degradation products of lignin, greatly stimulate the growth and fertility of the fungus in liquid cultures. Analyses of the CATΔΔΔΔΔ mutant lacking all its catalases, pro-oxidants and antioxidants indicate that improved growth and fertility of the fungus is likely caused by augmented reactive oxygen species levels triggered by the presence of phenolics.

11.
Mol Genet Genomics ; 294(1): 177-190, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30288581

ABSTRACT

Mechanisms involved in fine adaptation of fungi to their environment include differential gene regulation associated with single nucleotide polymorphisms and indels (including transposons), horizontal gene transfer, gene copy amplification, as well as pseudogenization and gene loss. The two Podospora genome sequences examined here emphasize the role of pseudogenization and gene loss, which have rarely been documented in fungi. Podospora comata is a species closely related to Podospora anserina, a fungus used as model in several laboratories. Comparison of the genome of P. comata with that of P. anserina, whose genome is available for over 10 years, should yield interesting data related to the modalities of genome evolution between these two closely related fungal species that thrive in the same types of biotopes, i.e., herbivore dung. Here, we present the genome sequence of the mat + isolate of the P. comata reference strain T. Comparison with the genome of the mat + isolate of P. anserina strain S confirms that P. anserina and P. comata are likely two different species that rarely interbreed in nature. Despite having a 94-99% of nucleotide identity in the syntenic regions of their genomes, the two species differ by nearly 10% of their gene contents. Comparison of the species-specific gene sets uncovered genes that could be responsible for the known physiological differences between the two species. Finally, we identified 428 and 811 pseudogenes (3.8 and 7.2% of the genes) in P. anserina and P. comata, respectively. Presence of high numbers of pseudogenes supports the notion that difference in gene contents is due to gene loss rather than horizontal gene transfers. We propose that the high frequency of pseudogenization leading to gene loss in P. anserina and P. comata accompanies specialization of these two fungi. Gene loss may be more prevalent during the evolution of other fungi than usually thought.


Subject(s)
Fungal Proteins/genetics , Podospora/genetics , Sequence Analysis, DNA/methods , Base Sequence , Chromosome Mapping , Evolution, Molecular , Gene Deletion , Gene Expression Regulation, Fungal , Genetic Speciation , Podospora/classification , Pseudogenes , Sequence Analysis, RNA
12.
J Fungi (Basel) ; 4(3)2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29997371

ABSTRACT

Filamentous fungi frequently undergo bistable phenotypic switches. Crippled Growth of Podospora anserina is one such bistable switch, which seems to rely upon the mis-activation of a self-regulated PaMpk1 MAP kinase regulatory pathway. Here, we identify two new partners of this pathway: PaPro1, a transcription factor orthologous to Sordaria macrospora pro1 and Neurospora crassa ADV-1, and IDC4, a protein with an AIM24 domain. Both PaPro1 and IDC4 regulate stationary phase features, as described for the other actors of the PaMpk1 signaling pathway. However, PaPro1 is also involved in the control of fertilization by activating the transcription of the HMG8 and the mating type transcription factors, as well as the sexual pheromones and receptor genes. The roles of two components of the STRIPAK complex were also investigated by inactivating their encoding genes: PaPro22 and PaPro45. The mutants of these genes were found to have the same phenotypes as PaPro1 and IDC4 mutants as well as additional phenotypes including slow growth, abnormally shaped hyphae, pigment accumulation and blockage of the zygotic tissue development, indicating that the STRIPAK complex regulates, in addition to the PaMpk1 one, other pathways in P. anserina. Overall, the mutants of these four genes confirm the model by which Crippled Growth is due to the abnormal activation of the PaMpk1 MAP kinase cascade.

13.
Biochem Biophys Res Commun ; 503(2): 703-709, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29932913

ABSTRACT

We reported recently that the Parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO and YajL function as deglycases that repair proteins and nucleotides from endogeneous glycation by glyoxal and methylglyoxal, two reactive by-products of glucose metabolism responsible for up to 60% of glycation damage. Here, we show that DJ-1, deglycase 1 and deglycase 2 repair glyoxal- and methylglyoxal-glycated substrates, whereas deglycase 3 principally repairs glyoxal-glycated substrates. Moreover, deglycase 1 and 2 are overexpressed in stationary phase, whereas deglycase 3 is steadily expressed throughout bacterial growth. Finally, deglycase mutants overexpress glyoxalases, aldoketoreductases, glutathione-S-transferase and efflux pumps to alleviate carbonyl stress. In the discussion, we present an overview of the multiple functions of DJ-1 proteins. Our thourough work on deglycases provides compelling evidence that their previously reported glyoxalase III activity merely reflects their deglycase activity. Moreover, for their deglycase activity the Maillard deglycases likely recruit: i) their chaperone activity to interact with glycated proteins, ii) glyoxalase 1 activity to catalyze the rearrangement of Maillard products (aminocarbinols and hemithioacetals) into amides and thioesters, respectively, iii) their protease activity to cleave amide bonds of glycated arginine, lysine and guanine, and iv) glyoxalase 2 activity to cleave thioester bonds of glycated cysteine. Finally, because glycation affects many cellular processes, the discovery of the Maillard deglycases, awaited since 1912, likely constitutes a major advance for medical research, including ageing, cancer, atherosclerosis, neurodegenerative, post-diabetic, renal and autoimmune diseases.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Deglycase DJ-1/metabolism , Ribosomal Proteins/metabolism , Glycation End Products, Advanced/metabolism , Glycosylation , Glyoxal/metabolism , Humans , Pyruvaldehyde/metabolism
14.
Taiwan J Obstet Gynecol ; 56(5): 677-680, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037557

ABSTRACT

OBJECTIVE: Isochromosome of the long arm of chromosome 20 (i(20q)) is a rare structural abnormality in prenatal diagnosis. Thirty prenatal cases of mosaic i(20q) have been reported, among which only four are associated with fetal malformations. We describe a new prenatal case of i(20q) with fetal malformations. MATERIALS AND METHODS: We also observed a discrepancy between uncultured and cultured amniotic fluid cells by using conventional cytogenetic, fluorescence in situ hybridization and array-SNP analysis. RESULTS: The short arm deletion of chromosome 20 arising from the isochromosome encompassed two candidate genes PAX1 and JAG1 involved in cranio-facial and vertebral development. CONCLUSION: The data would allow establishing a phenotype-genotype correlation. Thus, we proposed to define a recognizable syndrome combining cranio-facial dysmorphism, vertebral bodies' anomalies, feet and cerebral malformations.


Subject(s)
Chromosome Disorders/genetics , Chromosomes, Human, Pair 20/genetics , Flatfoot/genetics , Isochromosomes/genetics , Spine/abnormalities , Abortion, Induced , Adult , Chromosome Disorders/diagnosis , Chromosome Disorders/embryology , Female , Flatfoot/diagnosis , Flatfoot/embryology , Humans , Pregnancy , Spine/embryology
15.
Dev Biol ; 421(2): 126-138, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27979655

ABSTRACT

Filamentous ascomycetes produce complex multicellular structures during sexual reproduction. Little is known about the genetic pathways enabling the construction of such structures. Here, with a combination of classical and reverse genetic methods, as well as genetic mosaic and graft analyses, we identify and provide evidence for key roles for two genes during the formation of perithecia, the sexual fruiting bodies, of the filamentous fungus Podospora anserina. Data indicate that the proteins coded by these two genes function cell-non-autonomously and that their activity depends upon conserved cysteines, making them good candidate for being involved in the transmission of a reactive oxygen species (ROS) signal generated by the PaNox1 NADPH oxidase inside the maturing fruiting body towards the PaMpk1 MAP kinase, which is located inside the underlying mycelium, in which nutrients are stored. These data provide important new insights to our understanding of how fungi build multicellular structures.


Subject(s)
Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/genetics , Fungal Proteins/genetics , Genes, Fungal , Podospora/growth & development , Podospora/genetics , Signal Transduction/genetics , Amino Acid Sequence , Blotting, Western , Cellulose/pharmacology , Conserved Sequence , Cysteine/metabolism , Evolution, Molecular , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Gene Deletion , Genetic Complementation Test , Green Fluorescent Proteins/metabolism , Mosaicism , Mycelium/metabolism , Phenotype , Phosphorylation/drug effects , Subcellular Fractions/metabolism , Vacuoles/metabolism
16.
Appl Environ Microbiol ; 83(2)2017 01 15.
Article in English | MEDLINE | ID: mdl-27836848

ABSTRACT

Conversion of biomass into high-value products, including biofuels, is of great interest to developing sustainable biorefineries. Fungi are an inexhaustible source of enzymes to degrade plant biomass. Cellobiose dehydrogenases (CDHs) play an important role in the breakdown through synergistic action with fungal lytic polysaccharide monooxygenases (LPMOs). The three CDH genes of the model fungus Podospora anserina were inactivated, resulting in single and multiple CDH mutants. We detected almost no difference in growth and fertility of the mutants on various lignocellulose sources, except on crystalline cellulose, on which a 2-fold decrease in fertility of the mutants lacking P. anserina CDH1 (PaCDH1) and PaCDH2 was observed. A striking difference between wild-type and mutant secretomes was observed. The secretome of the mutant lacking all CDHs contained five beta-glucosidases, whereas the wild type had only one. P. anserina seems to compensate for the lack of CDH with secretion of beta-glucosidases. The addition of P. anserina LPMO to either the wild-type or mutant secretome resulted in improvement of cellulose degradation in both cases, suggesting that other redox partners present in the mutant secretome provided electrons to LPMOs. Overall, the data showed that oxidative degradation of cellulosic biomass relies on different types of mechanisms in fungi. IMPORTANCE: Plant biomass degradation by fungi is a complex process involving dozens of enzymes. The roles of each enzyme or enzyme class are not fully understood, and utilization of a model amenable to genetic analysis should increase the comprehension of how fungi cope with highly recalcitrant biomass. Here, we report that the cellobiose dehydrogenases of the model fungus Podospora anserina enable it to consume crystalline cellulose yet seem to play a minor role on actual substrates, such as wood shavings or miscanthus. Analysis of secreted proteins suggests that Podospora anserina compensates for the lack of cellobiose dehydrogenase by increasing beta-glucosidase expression and using an alternate electron donor for LPMO.


Subject(s)
Carbohydrate Dehydrogenases/genetics , Cellulose/metabolism , Fungal Proteins/genetics , Podospora/enzymology , Podospora/genetics , Carbohydrate Dehydrogenases/metabolism , Enzyme Activation/genetics , Fungal Proteins/metabolism , Gene Deletion , Phenotype , Phylogeny , Podospora/metabolism
17.
Fungal Genet Biol ; 94: 1-10, 2016 09.
Article in English | MEDLINE | ID: mdl-27353975

ABSTRACT

In filamentous fungi, entrance into stationary phase is complex as it is accompanied by several differentiation and developmental processes, including the synthesis of pigments, aerial hyphae, anastomoses and sporophores. The regulatory networks that control these processes are still incompletely known. The analysis of the "Impaired in the development of Crippled Growth (IDC)" mutants of the model filamentous ascomycete Podospora anserina has already yielded important information regarding the pathway regulating entrance into stationary phase. Here, the genes affected in two additional IDC mutants are identified as orthologues of the Saccharomyces cerevisiae WHI2 and PSR1 genes, known to regulate stationary phase in this yeast, arguing for a conserved role of these proteins throughout the evolution of ascomycetes.


Subject(s)
Gene Expression Regulation, Fungal , Gene Regulatory Networks , Mycelium/genetics , Podospora/genetics , Fungal Proteins/genetics , Genetic Complementation Test , Mutation , Mycelium/growth & development , Phosphorylation , Podospora/growth & development
18.
Biotechnol Adv ; 34(5): 976-983, 2016.
Article in English | MEDLINE | ID: mdl-27263000

ABSTRACT

The degradation of plant biomass is a major challenge towards the production of bio-based compounds and materials. As key lignocellulolytic enzyme producers, filamentous fungi represent a promising reservoir to tackle this challenge. Among them, the coprophilous ascomycete Podospora anserina has been used as a model organism to study various biological mechanisms because its genetics are well understood and controlled. In 2008, the sequencing of its genome revealed a great diversity of enzymes targeting plant carbohydrates and lignin. Since then, a large array of lignocellulose-acting enzymes has been characterized and genetic analyses have enabled the understanding of P. anserina metabolism and development on plant biomass. Overall, these research efforts shed light on P. anserina strategy to unlock recalcitrant lignocellulose deconstruction.


Subject(s)
Biomass , Lignin , Podospora , Cellulases , Fungal Proteins , Genetic Engineering , Lignin/analysis , Lignin/chemistry , Lignin/metabolism , Podospora/enzymology , Podospora/metabolism , Podospora/physiology
19.
Birth Defects Res A Clin Mol Teratol ; 106(4): 298-303, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26931099

ABSTRACT

BACKGROUND: Monochorionic twins are generally considered as a monozygotic twin pregnancy. However, several cases of monochorial dizygotic twin pregnancies have been reported. CASE REPORT: We report on a rare case of monochorionic dizygotic twin pregnancy conceived after induced ovulation in a 32-year-old woman. The diagnosis was made on morphological ultrasound examination at 18+4 weeks of gestation, showing two fetuses with discordant sex. The amniocentesis was declined by the patient. RESULTS: The monochorionic status was confirmed after a histopathalogical study of the placenta. At delivery, both a phenotypically normal boy and a phenotypically normal girl without sexual abnormality were observed. This analysis also revealed the presence of vascular anastomoses between both fetal circulations. Postnatal cytogenetic analyses indicated the presence of a chimerism in peripheral blood lymphocytes. This chimerism was not observed in cells obtained from a buccal swab. Molecular determination of zygosity confirmed the existence of the confined peripheral blood chimerism with the presence of four parental alleles. CONCLUSION: We report on a case of monochorionic dizygotic twin pregnancy. This observation underlies the need to carefully assess twin pregnancies, especially when obtained after assisted reproductive technology.


Subject(s)
Chimerism , Twins, Dizygotic , Adult , Female , Humans , Male , Ovulation Induction , Pregnancy
20.
Biochem Biophys Res Commun ; 470(2): 282-286, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26774339

ABSTRACT

YhbO and YajL belong to the PfpI/Hsp31/DJ-1 superfamily. Both proteins are involved in protection against environmental stresses. Here, we show that, like DJ-1 and Hsp31, they repair glyoxal- and methylglyoxal-glycated proteins. YhbO and YajL repair glycated serum albumin, collagen, glyceraldehyde-3-phosphate dehydrogenase, and fructose biphosphate aldolase. Bacterial extracts from deglycase mutants display increased glycation levels, whereas deglycase overexpression decreases protein glycation. Moreover, yhbO and yajL mutants display decreased viability in methylglyoxal- or glucose-containing media. Finally, the apparent glyoxalase activities of YhbO and YajL reflect their deglycase activities.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Glyoxal/metabolism , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Pyruvaldehyde/metabolism , Ribosomal Proteins/metabolism , Cytoprotection/physiology , Glycation End Products, Advanced/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...